Probe Software Users Forum

Software => Probe for EPMA => Topic started by: Probeman on November 18, 2013, 12:44:24 PM

Title: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on November 18, 2013, 12:44:24 PM
I'm opening this topic with the intent to create a place to discuss improving the Time Dependent Intensity (TDI) correction in Probe for EPMA for beam sensitive sample acquisition. If you want to ask questions or comment on the existing TDI correction please use this topic link here:

http://smf.probesoftware.com/index.php?topic=11.0

The reason for this is that although the TDI correction is PFE works well well for almost all beam sensitive samples (both "volatile" and "grow-in" artifacts as documented by many investigators, such as Stuart Kearns, http://www.geology.wisc.edu/~johnf/g777/AmMin/Humphreys_2006.pdf, and George Morgan, http://www.geology.wisc.edu/~johnf/g777/AmMin/MorganLondon2005.pdf), there are still some situations requiring an even more robust TDI correction due to the limited size of the sample (requiring a more focused beam), or element sensitivity (requiring a higher beam current).

And let's be honest, if we could run these samples at cryogenic temperatures as suggested by Stuart Kearns we could use our existing TDI methods just fine, but almost no one (not even Stuart anymore!), has an EPMA instrument with a cryogenic stage, (Electronprobe Microanalysis of Volcanic Glass at Cryogenic Temperatures (2002) S.L. Kearns,N. Steen and E. Erlund, Microscopy and Microanalysis 8 (Supple 2), 1562-1563CD), so we need a robust software solution that works even under less than ideal conditions.

Please feel free to chime in with your questions, observations and comments. This topic is for all researchers working with beam sensitive materials in EPMA.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on November 18, 2013, 02:01:49 PM
Ok, let's start by reviewing what we can do with the Time Dependent Intensity (TDI) correction in Probe for EPMA, which I believe is the best method currently available. By the way, to give credit where credit is due, Paul Carpenter suggested we use the term Time Dependent Intensity, rightly I would say, because then we are not assuming physics we don't fully understand (sample heating, sub-surface charging, ion migration, changes in the matrix absorption due to ion migration, etc.).

Here we see a large but otherwise typical TDI correction (note most of the examples we will discuss will be from Na intensities, but the PFE TDI correction applies equally well to all elements that undergo changes in intensity as a function of beam exposure, e.g., K, Si, Al, F, P, etc.):

(https://smf.probesoftware.com/oldpics/i43.tinypic.com/2qcmaty.jpg)

The above example has a Na TDI correction percent of almost 80%. Not too bad for losing almost half one's Na intensity as seen here:

Un   17 Withers-N5, Results in Elemental Weight Percents

ELEM:       Na       K      Cl      Ba       F      Ti      Fe      Mn      Ca      Si      Al      Mg       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    SPEC
BGDS:      MAN     LIN     LIN     LIN     LIN     LOW     MAN     LIN     MAN     MAN     MAN     MAN     EXP
TIME:    60.00   20.00   10.00   20.00   40.00   10.00   40.00   10.00   20.00   20.00   20.00   60.00  120.00
BEAM:     9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98

ELEM:       Na       K      Cl      Ba       F      Ti      Fe      Mn      Ca      Si      Al      Mg       O       H   SUM 
   574   2.780   3.536    .205    .030    .086    .108   3.136    .060    .162  32.680   5.404    .012  50.078    .665  98.943
   575   3.072   3.557    .207    .017    .084    .124   3.120    .079    .148  32.990   5.365    .007  49.939    .594  99.303
   576   2.846   3.314    .180    .032    .100    .137   3.131    .083    .129  32.914   5.316    .000  49.919    .624  98.727
   577   2.925   3.550    .258    .041    .111    .098   3.165    .058    .118  32.858   5.437   -.001  49.985    .621  99.224
   578   3.011   3.502    .258   -.014    .083    .072   3.173    .081    .116  32.715   5.364    .009  49.812    .626  98.810
   579   3.043   3.561    .239   -.079    .070    .124   3.191    .083    .130  32.812   5.428    .006  50.012    .623  99.244
   580   2.842   3.531    .223    .016    .089    .101   3.125    .055    .132  32.799   5.335   -.001  49.969    .644  98.859
   581   3.179   3.459    .248   -.019    .121    .118   3.100    .050    .152  33.024   5.362    .006  50.053    .605  99.455
   582   2.924   3.505    .164   -.025    .080    .134   3.197    .051    .120  33.124   5.375    .009  49.790    .562  99.009
   583   2.890   3.436    .218   -.062    .033    .147   3.165    .031    .143  32.919   5.388    .003  49.908    .609  98.830
   584   2.952   3.381    .213    .004    .033    .124   3.124    .064    .133  33.068   5.325    .004  49.852    .588  98.865
   585   2.699   3.608    .191    .029    .071    .121   3.150    .061    .161  33.000   5.380    .006  50.223    .641  99.341

AVER:    2.930   3.495    .217   -.003    .080    .117   3.148    .063    .137  32.909   5.373    .005  49.962    .617  99.051
SDEV:     .133    .084    .030    .038    .026    .020    .030    .016    .016    .139    .038    .004    .122    .028    .248
SERR:     .038    .024    .009    .011    .008    .006    .009    .005    .005    .040    .011    .001    .035    .008
%RSD:     4.54    2.40   13.87-1523.47   33.10   17.21     .97   25.48   11.67     .42     .70   80.01     .24    4.47
STDS:      336     374     285     835     835      22     395      25     358     162     336      12      12       0

STKF:    .0735   .1132   .0601   .7430   .1715   .5546   .6779   .7341   .1693   .2018   .1331   .4737   .2328   .0000
STCT:   2447.9  2423.7   839.3  8520.6  2398.7  6097.6 14136.8 13590.2  2247.6 34290.6 23223.7 24410.3  8335.9      .0

UNKF:    .0154   .0303   .0017   .0000   .0002   .0010   .0261   .0005   .0012   .2688   .0412   .0000   .2315   .0000
UNCT:    513.0   648.1    24.2     -.2     2.7    10.8   545.2     9.5    16.2 45673.8  7190.2     1.7  8290.2      .0
UNBG:      9.9    12.6     5.0    29.0     3.8     5.8    23.4    16.1     4.4   134.1   103.2    15.2    53.7      .0

ZCOR:   1.9017  1.1548  1.2500  1.3725  4.0763  1.1972  1.2041  1.2234  1.1196  1.2241  1.3036  1.4987  2.1582   .0000
KRAW:    .2096   .2674   .0289   .0000   .0011   .0018   .0386   .0007   .0072  1.3320   .3096   .0001   .9945   .0000
PKBG:    52.69   52.56    6.39    1.00    1.77    3.03   24.32    1.61    4.71  341.58   70.64    1.11  156.16     .00
INT%:     ----    ----    ----   -3.81    ----    -.02    ----    ----    ----    ----    ----    ----    ----    ----
APF:      ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----   1.031    ----

TDI%:   79.930    .454    ----    ----    ----    ----    ----    ----    ----   -.870    ----    ----  -3.030    ----
DEV%:      2.7     2.4    ----    ----    ----    ----    ----    ----    ----      .3    ----    ----      .3    ----
TDIF:   QUADRA  LINEAR    ----    ----    ----    ----    ----    ----    ----  LINEAR    ----    ----  LINEAR    ----
TDIT:    72.58   30.67    ----    ----    ----    ----    ----    ----    ----   31.00    ----    ----  129.42    ----
TDII:     522.    660.    ----    ----    ----    ----    ----    ----    ----  45860.    ----    ----   8327.    ----
BLNK#:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----      19    ----
BLNKL:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ---- 43.5580    ----
BLNKV:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ---- 44.9622    ----


Potassium is much less affected at 0.454 % (not even statistically significant) and silicon and oxygen are minor corrections (-0.87 and -3.03 % respectively, though both statistically significant).

By the way, the above calculation is for water by stoichiometry to measured excess oxygen as first described by Barbara Nash, http://www.geology.wisc.edu/courses/g777/AmMin/Nash.pdf.

Expressed as oxides the results are seen here for this glass made by Tony Withers and water determined by FTIR at 5.06 wt%:

Un   17 Withers-N5, Results in Oxide Weight Percents

ELEM:     Na2O     K2O      Cl     BaO       F    TiO2     FeO     MnO     CaO    SiO2   Al2O3     MgO       O     H2O   SUM 
   574   3.747   4.260    .205    .033    .086    .180   4.034    .078    .227  69.915  10.212    .019    .000   5.947  98.943
   575   4.142   4.284    .207    .018    .084    .207   4.014    .102    .207  70.578  10.138    .011    .000   5.311  99.303
   576   3.836   3.992    .180    .036    .100    .229   4.028    .108    .180  70.415  10.045    .001    .000   5.576  98.727
   577   3.943   4.276    .258    .046    .111    .164   4.072    .075    .165  70.295  10.274   -.001    .000   5.548  99.224
   578   4.059   4.219    .258   -.015    .083    .120   4.082    .105    .163  69.989  10.135    .015    .000   5.597  98.810
   579   4.102   4.290    .239   -.088    .070    .207   4.105    .107    .182  70.196  10.257    .009    .000   5.567  99.244
   580   3.831   4.253    .223    .018    .089    .169   4.020    .070    .184  70.168  10.080   -.002    .000   5.755  98.859
   581   4.285   4.166    .248   -.021    .121    .196   3.988    .064    .213  70.650  10.131    .009    .000   5.405  99.455
   582   3.942   4.222    .164   -.028    .080    .224   4.114    .065    .168  70.863  10.155    .014    .000   5.026  99.009
   583   3.895   4.139    .218   -.069    .033    .246   4.072    .040    .200  70.426  10.181    .006    .000   5.443  98.830
   584   3.980   4.073    .213    .004    .033    .207   4.020    .083    .186  70.744  10.061    .006    .000   5.256  98.865
   585   3.638   4.346    .191    .033    .071    .202   4.052    .079    .225  70.599  10.165    .010    .000   5.730  99.341

AVER:    3.950   4.210    .217   -.003    .080    .196   4.050    .081    .192  70.403  10.153    .008    .000   5.513  99.051
SDEV:     .179    .101    .030    .043    .026    .034    .039    .021    .022    .298    .071    .007    .000    .247    .248
SERR:     .052    .029    .009    .012    .008    .010    .011    .006    .006    .086    .021    .002    .000    .071
%RSD:     4.54    2.40   13.87-1523.47   33.10   17.21     .97   25.48   11.67     .42     .70   80.01  159.54    4.47
STDS:      336     374     285     835     835      22     395      25     358     162     336      12      12       0


Full details of this method are described here:

http://epmalab.uoregon.edu/reports/Withers%20hydrous%20glass.pdf
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on November 18, 2013, 02:53:32 PM
All this is great, so what's the problem?

Well as mentioned previously, sometimes we have to focus the beam and/or increase the beam current and this can cause a number of additional artifacts. The first I will focus on is the so called "incubation time" described by Stuart Kearns which can be seen in a number of compositions, but the high Na glasses prepared for NIST provides extremely beam sensitive materials that can be useful in these investigations, as we can see here in the low time resolution TDI acquisition on K-0373 NIST glass (10 nA, 10 um):

(https://smf.probesoftware.com/oldpics/i43.tinypic.com/29c9r0l.jpg)

A higher time resolution TDI acquisition will make this artifact even more obvious:

(https://smf.probesoftware.com/oldpics/i40.tinypic.com/2vs146w.jpg)

I suspect that what we are seeing here with this "incubation time" is the warming of the sample by the electron beam. That is to say, ion migration of alkali elements towards the sub surface charge implanted by the electron probe does not start, until the sample spot is heated sufficiently. This hypothesis is further supported by a number of acquisitions where it is observed that it is the first point that almost always shows this "incubation time" effect most strongly. In the previous 10 nA, 20 um beam TDI acquisition it can be seen by displaying all the data points for the sample as seen here:

(https://smf.probesoftware.com/oldpics/i40.tinypic.com/8x8pjb.jpg)

This can also be confirmed by displaying the x and y stage positions of these analyses as seen here:

(https://smf.probesoftware.com/oldpics/i42.tinypic.com/2gt0won.jpg)

Note that with a 10 um beam, the 10 um spaced points are essentially adjacent, and therefore the previous point provides a heating time to eliminate sufficient to reduce the "incubation time".  Which brings me to a partial solution for this issue.

Clearly if the "incubation time" is variable due to the proximity of previous TDI acquisitions we will have to be more careful about our selection of points for analysis. But if the "incubation time" is fairly reproducible we could utilize a delay in acquisition after the faraday cup is removed, but before the intensity acquisition begins. Interestingly enough, this feature is already built into Probe for EPMA but intended for another application. Called the "Decontamination Time" it was intended to be used for carbon analysis (Pinard and Richter) to allow time for the native hydrocarbon layer on the sample to be removed prior to the count integration as seen here:

(https://smf.probesoftware.com/oldpics/i40.tinypic.com/xn7sef.jpg)

So what's next?  Let's examine some other TDI acquisition log slopes more carefully, starting with this acquisition on yet another high Na NIST glass (K-1718) at 10 nA and 10 um, which shows several slopes in exponential space as seen here:

(https://smf.probesoftware.com/oldpics/i42.tinypic.com/9vb4vb.jpg)

What's a micro analyst to do?
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: qEd on November 19, 2013, 08:35:40 AM
Oh so back to the problematic issue of slope dermination. The first order approach any salt of the earth spectroscopist would use involves displaying the 1st derivative followed by user interaction by defining the range of time over which the slope is determined.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: qEd on November 19, 2013, 10:16:53 AM
Breaking out the slope of the earliest/first time dependency mechanism is the most (or only) critical measurement to make as it directly impacts the magnitide of the signal at t=0 unless you are studying the ongoing physics of e- beam-matter interaction itself.

For the materials I have examined such changes take place over relatively short periods of time secs. Hence the challenge is to collect data at short intervals, at the expense of statistics. Once too much time has passed you are potentially either 1)within another of damage regime, or 2) have integrated over an interval so large the slope of the natural log curve is less accurate.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on November 19, 2013, 02:19:51 PM
Hi Ed,
I agree completely, especially on the point that we are dealing with several different physical regimes with different time scales, e.g., thermal conductivity vs. ion migration vs. sub surface charge dissapation, but here are my two points (worth one cent each).

1. It is usually better if there is less human subjectivity involved in any analytical procedure. Yes, I could add several user adjustable parameters, but I have found that humans (and I think I can include myself in that group!), have difficulty not adjusting things to the way they want it to be, as opposed to a purely statistical/mathematical decision made by the computer.

So maybe the program should alternately try different fit models until it finds the least average deviation?

What I'm getting at is maybe adding an exponential fit to the existing linear (exponential) and quadratic (hyper-exponential) models, which means in log space we now have a double exponential fit, is worth a try. Such considerations are what this topic is for.

2. The long term (40 or more seconds) TDI acquisition might not only be useful for physics modeling. Maybe it will be possible to back out water vs. hydroxyl based on the slope at different time periods. Yes, I just made that up, but we don't know what we don't know!

Basically I think that I'd like to have the most robust fit available for whatever the data looks like and I agree, it might be that we want to count short TDI intervals to capture the initial intensity at time = 0, but that doesn't mean that we should have to acquire TDI data that way- maybe we have a beam sensitive trace element?

So let's look at where we are on the most beam sensitive material that I have found, the K-1781 NIST glass. Here is an analysis, 10 nA, 10 um *without* any TDI correction:

St  171 Set   9 K-1718 NBS Glass, Results in Elemental Weight Percents

SPEC:        O
TYPE:     SPEC

AVER:   43.050
SDEV:     .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    40.00   40.00   40.00   40.00   40.00
BEAM:    10.58   10.58   10.58   10.58   10.58

ELEM:       Na      Si      Ca      Fe       P   SUM 
    56   7.849  29.765   4.000  11.140    .008  95.813
    57   7.696  30.010   3.958  11.078   -.017  95.775
    58   8.004  29.527   3.969  11.224   -.029  95.746
    59   7.703  29.477   3.985  11.022    .040  95.277
    60   7.822  29.776   3.952  11.185    .044  95.829

AVER:    7.815  29.711   3.973  11.130    .009  95.688
SDEV:     .126    .215    .020    .081    .033    .232
SERR:     .056    .096    .009    .036    .015
%RSD:     1.61     .72     .50     .73  349.44

PUBL:   14.837  28.048   3.574  10.491    n.a. 100.000
%VAR:   -47.33    5.93   11.17    6.09     ---
DIFF:   -7.022   1.663    .399    .639     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    76.73   79.39  602.77   66.49   40.15

UNKF:    .0382   .2422   .0367   .0945   .0001
UNCT:    39.89   46.89   61.54   66.11     .02
UNBG:      .31     .13    1.04     .98     .06

ZCOR:   2.0450  1.2267  1.0819  1.1776  1.4231
KRAW:    .5199   .5906   .1021   .9944   .0004
PKBG:   143.98  389.44   60.42   69.66     .50


Only a -50% error! Now the same measurements with the linear (exponential) TDI fit:

St  171 Set   9 K-1718 NBS Glass, Results in Elemental Weight Percents

SPEC:        O
TYPE:     SPEC

AVER:   43.050
SDEV:     .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    40.00   40.00   40.00   40.00   40.00
BEAM:    10.58   10.58   10.58   10.58   10.58

ELEM:       Na      Si      Ca      Fe       P   SUM 
    56  17.153  28.107   3.841  11.115    .008 103.273
    57  16.928  26.992   3.739  11.054   -.017 101.746
    58  17.702  27.520   3.730  11.198   -.029 103.172
    59  16.806  27.754   3.718  10.997    .040 102.365
    60  17.048  27.434   3.747  11.160    .044 102.484

AVER:   17.128  27.561   3.755  11.105    .009 102.608
SDEV:     .346    .411    .049    .081    .033    .628
SERR:     .155    .184    .022    .036    .015
%RSD:     2.02    1.49    1.31     .73  348.95

PUBL:   14.837  28.048   3.574  10.491    n.a. 100.000
%VAR:    15.44   -1.73    5.08    5.85     ---
DIFF:    2.291   -.487    .181    .614     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    78.13   79.81  605.49   66.49   40.15

UNKF:    .0875   .2181   .0348   .0945   .0001
UNCT:    93.06   42.45   58.61   66.11     .02
UNBG:      .31     .13    1.04     .98     .06

ZCOR:   1.9564  1.2636  1.0786  1.1749  1.4144
KRAW:   1.1911   .5319   .0968   .9944   .0004
PKBG:   335.08  353.48   57.57   69.66     .50

TDI%:  133.257  -9.459  -4.765    ----    ----
DEV%:      7.1     2.7     2.5    ----    ----
TDIF:   LINEAR  QUADRA  LINEAR    ----    ----
TDIT:    94.00   94.00   92.80    ----    ----
TDII:     84.3    42.4    59.5    ----    ----


Now only a +15% error. Next we use the quadratic (hyper-exponential) fit:

St  171 Set   9 K-1718 NBS Glass, Results in Elemental Weight Percents

SPEC:        O
TYPE:     SPEC

AVER:   43.050
SDEV:     .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    40.00   40.00   40.00   40.00   40.00
BEAM:    10.58   10.58   10.58   10.58   10.58

ELEM:       Na      Si      Ca      Fe       P   SUM 
    56  16.267  28.049   3.841  11.117    .008 102.332
    57  15.369  26.894   3.739  11.058   -.017 100.093
    58  15.942  27.409   3.731  11.203   -.029 101.305
    59  15.072  27.641   3.719  11.002    .040 100.523
    60  15.408  27.329   3.748  11.164    .044 100.744

AVER:   15.611  27.464   3.756  11.109    .009 100.999
SDEV:     .482    .424    .049    .081    .033    .864
SERR:     .216    .190    .022    .036    .015
%RSD:     3.09    1.55    1.30     .73  348.95

PUBL:   14.837  28.048   3.574  10.491    n.a. 100.000
%VAR:     5.22   -2.08    5.10    5.89     ---
DIFF:     .774   -.584    .182    .618     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    78.13   79.81  605.49   66.49   40.15

UNKF:    .0791   .2181   .0348   .0945   .0001
UNCT:    84.09   42.45   58.61   66.11     .02
UNBG:      .31     .13    1.04     .98     .06

ZCOR:   1.9735  1.2591  1.0788  1.1754  1.4140
KRAW:   1.0763   .5319   .0968   .9944   .0004
PKBG:   302.73  353.48   57.57   69.66     .50

TDI%:  110.768  -9.459  -4.765    ----    ----
DEV%:      3.8     2.7     2.5    ----    ----
TDIF:   QUADRA  QUADRA  LINEAR    ----    ----
TDIT:    94.00   94.00   92.80    ----    ----
TDII:     84.1    42.4    59.5    ----    ----


Now we have "only" a +5% relative error on Na and this is with a 110% correction to the intensity. Is it perfect? No. Is it better than a poke in the eye with a sharp stick? Yes, and then some.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: qEd on November 20, 2013, 08:40:23 AM
John,
I understand your point about designing the software with the least fraction of user bias. SO one option would be to compute the instantaneous slope at time steps. E.g. the first 3-4 slopes computed are similar to within X%, you are done and can analyze the material. If however, the values are not simlilar to within that tolerance, expand the number of slopes by some amount to increase  the population, if the new SD "converges", you are done. If that value becomes larger then I am not smart enough to recommend an unbiased method for automated analysis and recommend the user intervene as a post collection Analyze! step.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on November 20, 2013, 03:10:26 PM
Wow, that is a good idea, though I'm not sure I'm smart enough to code it!

In the meantime, while I think about how your idea might be implemented, here's an option that many might not know about, that I find useful for the very reason we've been discussing (that the first TDI points are the most valuable points for extrapolating to zero time).

Let's start with a normal obsidian glass analysis, this was acquired with Combined Conditions, so the major elements are acquired as a lower beam current (10 nA) than the traces (50 nA) as seen here:

(https://smf.probesoftware.com/oldpics/i43.tinypic.com/ibm3ux.jpg)

Using *no* TDI correction we get these results for quantification:

Un    6 Obsidian trav1
(Magnification (analytical) =  20000),        Beam Mode = Analog  Spot
(Magnification (default) =     2524, Magnification (imaging) =    736)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:  50             Number of 'Good' Data Lines:  18
First/Last Date-Time: 11/19/2013 05:52:20 PM to 11/20/2013 12:08:21 AM
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Exponential Off-Peak correction for zr la

Average Total Oxygen:       48.564     Average Total Weight%:   97.796
Average Calculated Oxygen:  48.564     Average Atomic Number:   11.176
Average Excess Oxygen:        .000     Average Atomic Weight:   20.541
Oxygen Equiv. from Halogen:   .008  Halogen Corrected Oxygen:   48.555
Average ZAF Iteration:        3.00     Average Quant Iterate:     4.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Equivalent from Halogens (F/Cl/Br/I), Not Subtracted in the Matrix Correction

Combined Analytical Condition Arrays:
ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr
TAKE:     40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0
KILO:     15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0
CURR:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    50.0    50.0    50.0    50.0    50.0
SIZE:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0

Un    6 Obsidian trav1, Results in Elemental Weight Percents

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   1.770  35.590   3.816   7.044    .024    .511    .356    .060    .071    .002    .044    .036    .001   -.010  48.570    .000  97.884
   179   1.762  35.561   3.809   7.033    .016    .501    .351    .007    .048    .003    .046    .046   -.004   -.011  48.496    .000  97.663
   180   1.775  35.653   3.788   7.074    .017    .443    .364    .016    .046    .003    .042    .028   -.004    .006  48.622    .000  97.872
   181   1.815  35.576   3.802   6.993    .017    .471    .362    .032    .055   -.001    .039    .050   -.003   -.009  48.503    .000  97.703
   182   1.809  35.728   3.724   7.057    .021    .496    .369   -.021    .053   -.001    .041    .027    .000   -.008  48.706    .000  98.001
   183   1.829  35.621   3.802   7.019    .022    .465    .371   -.003    .058   -.001    .040    .037   -.003   -.006  48.573    .000  97.824
   184   1.855  35.658   3.775   7.054    .019    .516    .358   -.006    .064    .002    .035    .038   -.003    .001  48.662    .000  98.028
   185   1.861  35.641   3.807   6.993    .023    .493    .365   -.009    .040    .002    .036    .020   -.001   -.020  48.573    .000  97.825
   186   1.826  35.627   3.804   7.037    .024    .466    .363   -.017    .039    .001    .033    .037    .000    .000  48.594    .000  97.836
   187   1.831  35.592   3.831   6.959    .023    .462    .354    .040    .033    .000    .036    .042   -.005   -.010  48.487    .000  97.674
   188   1.829  35.573   3.765   7.059    .016    .403    .351    .031    .040    .001    .034    .023    .000   -.002  48.514    .000  97.637
   189   1.855  35.602   3.849   7.017    .019    .386    .355    .007    .029    .001    .033    .030    .003   -.006  48.534    .000  97.715
   190   1.861  35.704   3.837   7.054    .016    .426    .343    .032    .042    .002    .033    .027   -.006   -.015  48.680    .000  98.037
   191   1.832  35.588   3.759   7.006    .019    .439    .352    .001    .047   -.002    .034    .039   -.002   -.020  48.494    .000  97.586
   192   1.842  35.558   3.805   7.003    .018    .460    .361    .037    .064   -.001    .034    .034   -.001   -.006  48.494    .000  97.703
   193   1.876  35.672   3.773   6.995    .019    .476    .366    .032    .051    .000    .034    .031    .000   -.012  48.623    .000  97.937
   194   1.789  35.682   3.836   7.001    .019    .465    .351   -.013    .055   -.001    .035    .020   -.002   -.008  48.596    .000  97.825
   195   1.865  35.482   3.772   7.013    .016    .471    .352    .065    .040    .000    .035    .049    .004   -.018  48.427    .000  97.573

AVER:    1.827  35.617   3.797   7.023    .019    .464    .358    .016    .049    .001    .037    .034   -.001   -.009  48.564    .000  97.796
SDEV:     .035    .060    .032    .030    .003    .035    .008    .026    .011    .002    .004    .009    .003    .007    .076    .000    .147
SERR:     .008    .014    .008    .007    .001    .008    .002    .006    .003    .000    .001    .002    .001    .002    .018    .000
%RSD:     1.89     .17     .84     .43   14.75    7.53    2.11  161.28   23.09  265.87   10.91   26.42 -199.09  -82.48     .16     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    71.42  566.01  224.55   62.55   81.21   18.31  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0100   .2943   .0329   .0559   .0001   .0039   .0032   .0001   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:     9.75  406.17   65.30  104.57     .19     .75    5.02     .09    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .89     .52     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8208  1.2103  1.1537  1.2567  1.4293  1.1985  1.1194  1.2284  1.2180  1.2872  1.2540  1.1978  1.4649  1.4613   .0000   .0000
KRAW:    .1365   .7176   .2908  1.6717   .0024   .0407   .0312   .0003   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    31.48 1852.73   70.81  118.92    1.37    4.30    5.97    1.11    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.01    ----  -94.80    ----    ----    ----    ----    ----    ----    ----    ----


Obviously the totals are low, so we might suspect a TDI situation (even though we used a 10 um beam for all the points). If we examine the TDI data (I almost always just leave this acquisition option turned on because it uses very little overhead, and if you do run into a TDI situation you already have the intensity interval data to perform a TDI correction), you'll see a significant decrease in the Na intensities over time as seen here:

(https://smf.probesoftware.com/oldpics/i41.tinypic.com/msf0g7.jpg)

For Si ka the situation is less dire (and is barely statistically significant), but worth a correction:

(https://smf.probesoftware.com/oldpics/i41.tinypic.com/5vu4up.jpg)

Al ka is somewhat more statistically significant as seen here:

(https://smf.probesoftware.com/oldpics/i42.tinypic.com/2wrhpbb.jpg)

The results for these linear (exponential) extrapolations are seen here:

Un    6 Obsidian trav1, Results in Elemental Weight Percents

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   3.458  35.730   3.773   7.123    .025    .509    .356    .061    .071    .002    .044    .036    .001   -.010  49.379    .000 100.556
   179   3.582  35.538   3.941   6.956    .017    .467    .351    .008    .048    .003    .046    .045   -.004   -.011  49.052    .000 100.038
   180   3.500  35.492   3.746   6.986    .019    .428    .364    .018    .046    .003    .042    .028   -.004    .006  48.949    .000  99.621
   181   3.414  35.456   3.844   6.899    .018    .454    .362    .034    .055   -.001    .039    .050   -.003   -.009  48.843    .000  99.455
   182   3.611  35.556   3.657   7.047    .022    .476    .369   -.018    .053   -.001    .041    .027    .000   -.008  49.110    .000  99.943
   183   3.451  35.456   3.873   7.107    .023    .487    .371    .000    .058   -.001    .040    .037   -.003   -.006  49.050    .000  99.944
   184   3.550  35.447   3.738   6.971    .020    .501    .358   -.003    .064    .002    .035    .038   -.003    .001  48.927    .000  99.646
   185   3.516  35.604   3.797   6.893    .024    .414    .365   -.008    .040    .002    .036    .020   -.001   -.020  48.993    .000  99.676
   186   3.600  35.384   3.810   7.045    .026    .428    .363   -.014    .039    .001    .033    .037    .000    .000  48.933    .000  99.685
   187   3.442  35.291   3.888   6.912    .024    .454    .354    .044    .033    .000    .036    .042   -.005   -.010  48.673    .000  99.178
   188   3.502  35.386   3.720   7.048    .017    .406    .351    .033    .040    .001    .034    .023    .000   -.002  48.865    .000  99.424
   189   3.609  35.398   3.754   7.058    .020    .376    .355    .010    .029    .001    .033    .030    .003   -.006  48.927    .000  99.596
   190   3.459  35.330   3.871   7.052    .018    .453    .343    .036    .042    .002    .033    .027   -.006   -.015  48.824    .000  99.469
   191   3.454  35.410   3.676   6.966    .020    .477    .351    .004    .047   -.002    .034    .039   -.002   -.020  48.815    .000  99.269
   192   3.526  35.369   3.813   6.985    .020    .488    .360    .040    .063   -.001    .034    .034   -.001   -.006  48.860    .000  99.586
   193   3.650  35.608   3.663   7.046    .021    .452    .366    .034    .051    .000    .034    .031    .000   -.012  49.184    .000 100.128
   194   3.528  35.638   3.694   7.110    .020    .512    .351   -.011    .055   -.001    .035    .020   -.002   -.008  49.234    .000 100.175
   195   3.533  35.369   3.739   7.109    .017    .472    .352    .067    .040    .000    .035    .049    .004   -.018  48.959    .000  99.728

AVER:    3.521  35.470   3.778   7.017    .021    .459    .358    .018    .049    .001    .037    .034   -.001   -.009  48.977    .000  99.729
SDEV:     .068    .119    .083    .074    .003    .037    .008    .026    .011    .002    .004    .009    .003    .007    .170    .000    .347
SERR:     .016    .028    .020    .017    .001    .009    .002    .006    .003    .000    .001    .002    .001    .002    .040    .000
%RSD:     1.94     .34    2.19    1.06   14.11    8.09    2.12  140.65   23.09  265.87   10.91   26.43 -199.11  -82.49     .35     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    70.51  567.11  225.51   62.06   81.21   18.46  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0195   .2914   .0328   .0552   .0001   .0038   .0032   .0001   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:    18.68  403.03   65.30  102.52     .20     .74    5.02     .10    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .88     .51     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8086  1.2170  1.1526  1.2706  1.4508  1.1979  1.1182  1.2346  1.2173  1.2854  1.2525  1.1969  1.4626  1.4590   .0000   .0000
KRAW:    .2649   .7107   .2896  1.6521   .0025   .0403   .0312   .0004   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    59.19 1852.27   70.83  117.93    1.40    4.30    5.98    1.12    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.02    ----  -93.93    ----    ----    ----    ----    ----    ----    ----    ----

TDI%:   88.751   -.772   -.008  -1.945    ----   -.173    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
DEV%:      5.8      .7     2.8     1.2    ----     8.4    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIF:   LINEAR  LINEAR  LINEAR  LINEAR    ----  LINEAR    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIT:   125.56   97.78   61.11  117.28    ----  198.17    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDII:     18.5    403.    66.2    103.    ----    .963    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----


The totals look good, but are we done? Well if we look more closely at the Na TDI plot above, we see that there seems to be a slight curvature in the linear (exponential) fit, so maybe we should utilize the quadratic fit in log space or "hyper-exponential" fit as seen here:

(https://smf.probesoftware.com/oldpics/i42.tinypic.com/29dxq38.jpg)

How does this tiny change affect our results? Not that much, but a little. Note the difference in the average deviation in the linear and quadratic fits for Na. The linear (conventional exponential fit) has a DEV% of 5.8, while the "hyper-exponential" (quadratic exponential fit) has a DEV% of 3.4, so the hyper-exponential is definitetely a better fit to the data as seen here:

Un    6 Obsidian trav1, Results in Elemental Weight Percents

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   3.348  35.718   3.773   7.118    .025    .509    .356    .061    .071    .002    .044    .036    .001   -.010  49.322    .000 100.373
   179   3.491  35.527   3.941   6.952    .017    .467    .351    .008    .048    .003    .046    .045   -.004   -.011  49.004    .000  99.885
   180   3.286  35.467   3.747   6.976    .018    .428    .364    .018    .046    .003    .042    .028   -.004    .006  48.838    .000  99.264
   181   3.284  35.442   3.844   6.893    .018    .454    .362    .034    .055   -.001    .039    .050   -.003   -.009  48.776    .000  99.238
   182   3.335  35.524   3.658   7.035    .022    .476    .369   -.018    .053   -.001    .041    .027    .000   -.008  48.967    .000  99.481
   183   3.360  35.446   3.873   7.103    .023    .487    .371    .000    .058   -.001    .040    .037   -.003   -.006  49.003    .000  99.790
   184   3.379  35.427   3.739   6.964    .020    .501    .358   -.003    .064    .002    .035    .038   -.003    .001  48.839    .000  99.361
   185   3.540  35.606   3.797   6.895    .024    .414    .365   -.008    .040    .002    .036    .020   -.001   -.020  49.006    .000  99.717
   186   3.517  35.375   3.810   7.041    .026    .428    .363   -.014    .039    .001    .033    .037    .000    .000  48.890    .000  99.545
   187   3.432  35.290   3.888   6.912    .024    .454    .354    .044    .033    .000    .036    .042   -.005   -.010  48.668    .000  99.161
   188   3.320  35.365   3.720   7.040    .017    .406    .351    .033    .040    .001    .034    .023    .000   -.002  48.771    .000  99.118
   189   3.309  35.364   3.754   7.044    .020    .376    .355    .010    .029    .001    .033    .030    .003   -.006  48.772    .000  99.094
   190   3.479  35.332   3.871   7.053    .018    .453    .343    .036    .042    .002    .033    .027   -.006   -.015  48.834    .000  99.501
   191   3.412  35.405   3.676   6.964    .020    .477    .351    .004    .047   -.002    .034    .039   -.002   -.020  48.793    .000  99.198
   192   3.431  35.358   3.813   6.981    .019    .488    .360    .040    .063   -.001    .034    .034   -.001   -.006  48.811    .000  99.427
   193   3.423  35.582   3.663   7.036    .020    .452    .366    .034    .051    .000    .034    .031    .000   -.012  49.066    .000  99.747
   194   3.390  35.623   3.695   7.104    .020    .512    .351   -.011    .055   -.001    .035    .020   -.002   -.008  49.163    .000  99.944
   195   3.324  35.346   3.740   7.099    .017    .472    .352    .067    .040    .000    .035    .049    .004   -.018  48.851    .000  99.379

AVER:    3.392  35.455   3.778   7.012    .020    .459    .358    .019    .049    .001    .037    .034   -.001   -.009  48.910    .000  99.512
SDEV:     .079    .118    .083    .073    .003    .037    .008    .026    .011    .002    .004    .009    .003    .007    .162    .000    .341
SERR:     .019    .028    .019    .017    .001    .009    .002    .006    .003    .000    .001    .002    .001    .002    .038    .000
%RSD:     2.32     .33    2.19    1.03   14.25    8.09    2.12  140.57   23.09  265.88   10.91   26.43 -199.12  -82.46     .33     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    70.51  567.11  225.51   62.06   81.21   18.46  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0187   .2914   .0328   .0552   .0001   .0038   .0032   .0001   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:    17.98  403.03   65.30  102.52     .20     .74    5.02     .10    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .88     .51     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8095  1.2165  1.1527  1.2696  1.4493  1.1979  1.1183  1.2342  1.2174  1.2855  1.2526  1.1969  1.4627  1.4597   .0000   .0000
KRAW:    .2550   .7107   .2896  1.6521   .0025   .0403   .0312   .0004   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    57.04 1851.22   70.83  117.83    1.39    4.30    5.97    1.12    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.02    ----  -93.93    ----    ----    ----    ----    ----    ----    ----    ----

TDI%:   81.846   -.772   -.008  -1.945    ----   -.173    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
DEV%:      3.4      .7     2.8     1.2    ----     8.4    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIF:   QUADRA  LINEAR  LINEAR  LINEAR    ----  LINEAR    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIT:   125.56   97.78   61.11  117.28    ----  198.17    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDII:     18.3    403.    66.2    103.    ----    .963    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----


And our Na value went from 3.5 wt% to just under 3.4 wt%. Not much, remember the fit is better, so it should be a better extrapolation.

Now what about Ed's point about the early TDI intervals being more important for the extrapolation?

If we pull up the Analytical | Analysis Options menu dialog, in addition to a global flag for toggling all TDI corrections in the run, we also see the Use Time Weighted data for TFI Fit option. Let's turn that on and use the default 8 weighting factor which means that the first TDI point will be duplicated 8 times, the 2nd TDI point 7 times, the 3rd TDI point 6 times, etc., etc., before being fit!

(https://smf.probesoftware.com/oldpics/i43.tinypic.com/2pt3pk1.jpg)

Now what does our Na data look like?

Un    6 Obsidian trav1, Results in Elemental Weight Percents

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   3.086  35.654   3.801   7.090    .025    .497    .356    .061    .071    .002    .044    .036    .001   -.010  49.135    .000  99.848
   179   3.321  35.488   3.953   6.886    .017    .483    .351    .008    .048    .003    .046    .045   -.004   -.011  48.849    .000  99.483
   180   3.273  35.258   3.674   7.076    .018    .417    .364    .020    .046    .003    .042    .028   -.004    .006  48.666    .000  98.887
   181   3.121  35.403   3.897   6.847    .018    .480    .362    .034    .055   -.001    .039    .050   -.003   -.009  48.652    .000  98.946
   182   3.300  35.628   3.621   6.982    .022    .534    .369   -.019    .053   -.001    .041    .027    .000   -.008  49.035    .000  99.584
   183   3.354  35.546   3.822   7.081    .023    .494    .371   -.001    .058   -.001    .040    .037   -.003   -.006  49.088    .000  99.904
   184   3.277  35.309   3.695   6.935    .020    .471    .358   -.003    .064    .002    .035    .038   -.003    .001  48.626    .000  98.824
   185   3.450  35.538   3.764   6.835    .024    .418    .365   -.008    .040    .002    .036    .020   -.001   -.020  48.838    .000  99.302
   186   3.465  35.431   3.717   7.048    .026    .441    .363   -.015    .039    .001    .033    .037    .000    .000  48.925    .000  99.510
   187   3.366  35.184   3.895   6.827    .024    .475    .354    .044    .033    .000    .036    .042   -.005   -.010  48.456    .000  98.721
   188   3.155  35.356   3.740   6.979    .016    .392    .351    .033    .040    .001    .034    .023    .000   -.002  48.649    .000  98.768
   189   3.186  35.214   3.775   7.030    .020    .372    .355    .011    .029    .001    .033    .030    .003   -.006  48.549    .000  98.601
   190   3.365  35.294   3.854   7.085    .017    .473    .343    .036    .042    .002    .033    .027   -.006   -.015  48.783    .000  99.335
   191   3.305  35.340   3.648   6.952    .020    .475    .351    .004    .047   -.002    .034    .039   -.002   -.020  48.664    .000  98.854
   192   3.403  35.474   3.750   6.899    .019    .460    .360    .039    .063   -.001    .034    .034   -.001   -.006  48.840    .000  99.371
   193   3.304  35.654   3.683   7.005    .020    .446    .366    .033    .051    .000    .034    .031    .000   -.012  49.082    .000  99.699
   194   3.209  35.320   3.662   7.111    .020    .539    .351   -.009    .055   -.001    .035    .020   -.002   -.008  48.762    .000  99.064
   195   3.181  35.328   3.741   7.089    .017    .476    .352    .067    .040    .000    .035    .049    .004   -.018  48.774    .000  99.136

AVER:    3.284  35.412   3.761   6.987    .020    .464    .358    .019    .049    .001    .037    .034   -.001   -.009  48.798    .000  99.213
SDEV:     .110    .148    .094    .097    .003    .044    .008    .026    .011    .002    .004    .009    .003    .007    .195    .000    .403
SERR:     .026    .035    .022    .023    .001    .010    .002    .006    .003    .000    .001    .002    .001    .002    .046    .000
%RSD:     3.33     .42    2.50    1.38   14.35    9.44    2.12  138.43   23.09  265.87   10.91   26.43 -199.12  -82.49     .40     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    71.55  568.51  226.21   62.09   81.21   18.33  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0181   .2912   .0326   .0551   .0001   .0039   .0032   .0002   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:    17.66  403.69   65.20  102.27     .20     .75    5.02     .10    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .88     .51     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8103  1.2161  1.1528  1.2688  1.4481  1.1980  1.1184  1.2337  1.2174  1.2857  1.2528  1.1970  1.4629  1.4594   .0000   .0000
KRAW:    .2468   .7101   .2882  1.6472   .0025   .0407   .0312   .0004   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    56.05 1853.28   70.71  117.47    1.39    4.31    5.97    1.12    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.02    ----  -93.84    ----    ----    ----    ----    ----    ----    ----    ----

TDI%:   78.615   -.609   -.162  -2.187    ----    .092    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
DEV%:      2.5      .7     2.5     1.2    ----     7.6    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIF:   QUADRA  LINEAR  LINEAR  LINEAR    ----  LINEAR    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIT:   125.56   97.78   61.11  117.28    ----  198.17    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDII:     18.0    404.    66.1    103.    ----    .965    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----


I have to say I was surprised. The time weighted data option had more effect on the data that the hyper-exponential fit (on this dataset anyway), because Na went from 3.4 wt% to 3.28 wt% *and* the overall DEV% improved to 2.5.

So, yes, Ed is correct, we should give our first TDI intervals more "weight" one way or another.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on November 28, 2013, 11:31:56 AM
And now for something completely different!    ;D

A student recently analyzed a fiber optic as a class project and it was interesting to see the TDI effects for pure SiO2 crystal versus glass. For example, if we use SiO2 as a standard and acquire the standard also as an unknown, we get reasonable results because the TDI effects on the Si Ka and O ka are almost normalized out as seen here:

Un    7 SiO2 synthetic
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 11/27/2013 04:57:01 PM to 11/27/2013 05:21:02 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka

Average Total Oxygen:         .000     Average Total Weight%:   99.708
Average Calculated Oxygen:    .000     Average Atomic Number:   10.798
Average Excess Oxygen:        .000     Average Atomic Weight:   20.020
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    7 SiO2 synthetic, Results in Elemental Weight Percents

ELEM:       Si       O      Er      Cl
BGDS:      EXP     EXP     LIN     LIN
TIME:    40.00   40.00  160.00  160.00
BEAM:    50.09   50.09   50.09   50.09

ELEM:       Si       O      Er      Cl   SUM 
   169  46.586  53.121   -.001   -.001  99.705
   170  46.491  53.288   -.002    .001  99.777
   171  46.521  53.079    .008    .000  99.607
   172  46.599  53.152   -.009    .002  99.745
   173  46.459  53.260   -.013    .000  99.706

AVER:   46.531  53.180   -.003    .000  99.708
SDEV:     .060    .090    .008    .001    .064
SERR:     .027    .040    .004    .001
%RSD:      .13     .17 -235.67  745.15
STDS:       14      14    1003     285

STKF:    .4101   .2664   .5350   .0601
STCT:   693.09  267.64  184.31   43.90

UNKF:    .4082   .2661   .0000   .0000
UNCT:   689.96  267.40    -.01     .00
UNBG:     1.00    1.44     .82     .22

ZCOR:   1.1398  1.9985  1.5611  1.2798
KRAW:    .9955   .9991   .0000   .0000
PKBG:   692.47  186.37     .99    1.01


In addition to the TDI effects being similar (because we are analyzing the same material for both standard and unknown), they are also fairly minor in magnitude as seen here for Si Ka in SiO2 crystal:

(https://smf.probesoftware.com/oldpics/i43.tinypic.com/5ww4kn.jpg)

One could even argue we are "over fitting" the Si Ka TDI correction because it is such a small correction. Which is *not* the case for O Ka in SiO2 crystal:

(https://smf.probesoftware.com/oldpics/i40.tinypic.com/28cegid.jpg)

As has been observed by many, the oxygen intensity changes dramatically over time even with a 10 um diameter beam. In fact the TDI effect for O Ka is very dependent on subtle surface conditions such as the carbon coat. Because of this, with the TDI correction turned on for both the standard SiO2 and the same standard acquired as an unknown, we get these somewhat improved results for SiO2 analyzed as an unknown:

Un    7 SiO2 synthetic
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 11/27/2013 04:57:01 PM to 11/27/2013 05:21:02 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:   99.846
Average Calculated Oxygen:    .000     Average Atomic Number:   10.800
Average Excess Oxygen:        .000     Average Atomic Weight:   20.024
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    7 SiO2 synthetic, Results in Elemental Weight Percents

ELEM:       Si       O      Er      Cl
BGDS:      EXP     EXP     LIN     LIN
TIME:    40.00   40.00  160.00  160.00
BEAM:    50.09   50.09   50.09   50.09

ELEM:       Si       O      Er      Cl   SUM 
   169  46.629  53.392   -.001   -.001 100.019
   170  46.641  53.254   -.002    .001  99.893
   171  46.414  53.376    .007    .000  99.797
   172  46.619  52.784   -.009    .002  99.397
   173  46.856  53.279   -.013    .000 100.122

AVER:   46.632  53.217   -.003    .000  99.846
SDEV:     .157    .249    .008    .001    .280
SERR:     .070    .111    .004    .001
%RSD:      .34     .47 -230.82  747.92
STDS:       14      14    1003     285

STKF:    .4101   .2664   .5350   .0601
STCT:   699.38  249.93  184.41   50.55

UNKF:    .4092   .2662   .0000   .0000
UNCT:   697.79  249.77    -.01     .00
UNBG:     1.00    1.44     .82     .22

ZCOR:   1.1397  1.9993  1.5466  1.2799
KRAW:    .9977   .9993   .0000   .0000
PKBG:   700.33  174.14     .99    1.01

TDI%:    1.135  -6.591   -.632   -.248
DEV%:       .1      .2      .2     1.3
TDIF:   QUADRA  QUADRA  LINEAR  LINEAR
TDIT:    51.40   51.80  170.20  170.20
TDII:     698.    250.    .823    .220


From this we might conclude that even when analyzing the *same* material, it is sometimes necessary to run *both* the standard and unknown not only at similar beam conditions, but also utilizing the TDI acquisition and correction for both standard and unknown because of subtle variations in coating, adsorbed water, beam focus and thermal conductivity (etc.?).
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Probeman on December 05, 2013, 12:43:39 PM
Ok, so I was able to do a quick run of SiO2 crystal versus SiO2 glass and here are the results. Conditions (using the Analyze! "Report" button) were:

Compositional analyses were acquired on an electron microprobe (Cameca SX100 (TCP/IP Socket)) equipped with 5 tunable wavelength dispersive spectrometers. Operating conditions were 40 degrees takeoff angle, and a beam energy of 15 keV. The beam current was 50 nA, and the beam diameter was 10 microns.

Elements were acquired using analyzing crystals LPET for Cl ka, LTAP for Al ka, TAP for Si ka, and PC1 for O ka.

The standards were Ca10(PO4)6Cl2 (halogen corrected) for Cl ka, Nepheline (partial anal.) for Al ka, and SiO2 (elemental) (#14) for Si ka, O ka.

The counting time was 60 seconds for all elements. The intensity data was corrected for Time Dependent Intensity (TDI) loss (or gain) using a self calibrated correction for Si ka, O ka, Al ka, Cl ka. The off peak counting time was 20 seconds for all elements. Off Peak correction method was Linear for Cl ka, and Exponential for O ka, Al ka, Si ka.

Unknown and standard intensities were corrected for deadtime. Standard intensities were corrected for standard drift over time.

The exponential or polynomial background fit was utilized. See John J. Donovan, Heather A. Lowers and Brian G. Rusk, Improved electron probe microanalysis of trace elements in quartz, American Mineralogist, 96, 2011

The SiO2 crystal acquisition for Si Ka looks like this:

(https://smf.probesoftware.com/oldpics/i44.tinypic.com/win2wm.jpg)

The SiO2 crystal acquisition for O Ka looks like this:

(https://smf.probesoftware.com/oldpics/i41.tinypic.com/2zrnrrn.jpg)

The SiO2 glass acquisition for Si Ka looks like this:

(https://smf.probesoftware.com/oldpics/i42.tinypic.com/2w74pp3.jpg)

The SiO2 glass acquisition for O Ka looks like this:

(https://smf.probesoftware.com/oldpics/i40.tinypic.com/2ah76dh.jpg)

The quant results running both materials as unknowns (using SiO2 crystal as the primary standard) is here w/o the TDI correction:

Un    2 SiO2 xtal
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 02:48:14 PM to 12/03/2013 02:57:40 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka

Average Total Oxygen:         .000     Average Total Weight%:  100.309
Average Calculated Oxygen:    .000     Average Atomic Number:   10.799
Average Excess Oxygen:        .000     Average Atomic Weight:   20.019
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    2 SiO2 xtal, Results in Elemental Weight Percents

ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   117  46.791  53.450    .005    .001 100.247
   118  46.767  53.493    .000    .000 100.259
   119  46.849  53.574    .001    .000 100.425
   120  46.774  53.489    .000    .003 100.266
   121  46.785  53.559    .005    .001 100.350

AVER:   46.793  53.513    .002    .001 100.309
SDEV:     .033    .052    .003    .001    .076
SERR:     .015    .023    .001    .001
%RSD:      .07     .10  121.62  104.43
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   687.69  250.10  724.87   78.57

UNKF:    .4105   .2678   .0000   .0000
UNCT:   688.37  251.44     .10     .01
UNBG:      .98    1.38    3.19     .32

ZCOR:   1.1399  1.9982  1.2289  1.2798
KRAW:   1.0010  1.0053   .0001   .0002
PKBG:   704.90  183.81    1.03    1.04


Un    3 SiO2 glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 03:00:25 PM to 12/03/2013 03:09:47 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka

Average Total Oxygen:         .000     Average Total Weight%:   99.375
Average Calculated Oxygen:    .000     Average Atomic Number:   10.811
Average Excess Oxygen:        .000     Average Atomic Weight:   20.040
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    3 SiO2 glass, Results in Elemental Weight Percents

ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   122  46.514  52.881    .004    .004  99.403
   123  46.538  52.747    .004   -.003  99.285
   124  46.572  52.861    .006   -.003  99.436
   125  46.540  52.787    .005   -.003  99.329
   126  46.586  52.829    .006    .002  99.423

AVER:   46.550  52.821    .005    .000  99.375
SDEV:     .029    .055    .001    .003    .065
SERR:     .013    .024    .000    .001
%RSD:      .06     .10   23.08 -815.86
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   687.97  250.02  725.07   78.20

UNKF:    .4086   .2637   .0000   .0000
UNCT:   685.39  247.54     .21     .00
UNBG:      .97    1.28    3.17     .32

ZCOR:   1.1394  2.0028  1.2278  1.2803
KRAW:    .9962   .9901   .0003  -.0001
PKBG:   705.66  194.79    1.07    1.00


The SiO2 crystal looks fine because it was run at the exact same conditions as the SiO2 (crystal) standard, but the SiO2 glass is a little low in oxygen due to the different TDI effects for glass.

The quant results running both materials as unknowns (using SiO2 crystal as the primary standard) is here with the TDI correction:


Un    2 SiO2 xtal
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 02:48:14 PM to 12/03/2013 02:57:40 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:  100.335
Average Calculated Oxygen:    .000     Average Atomic Number:   10.802
Average Excess Oxygen:        .000     Average Atomic Weight:   20.024
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    2 SiO2 xtal, Results in Elemental Weight Percents

ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   117  46.871  53.523    .005    .001 100.400
   118  46.788  53.315    .000    .000 100.102
   119  46.907  53.558    .001    .000 100.466
   120  46.786  53.323    .000    .003 100.113
   121  46.931  53.658    .005    .001 100.595

AVER:   46.857  53.475    .002    .001 100.335
SDEV:     .067    .151    .003    .001    .219
SERR:     .030    .068    .001    .001
%RSD:      .14     .28  121.49  112.65
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   689.39  243.24  724.48   83.43

UNKF:    .4111   .2675   .0000   .0000
UNCT:   691.10  244.22     .10     .01
UNBG:      .98    1.38    3.19     .32

ZCOR:   1.1397  1.9994  1.2286  1.2799
KRAW:   1.0025  1.0040   .0001   .0001
PKBG:   707.67  178.58    1.03    1.04

TDI%:     .396  -2.869   -.408   -.238
DEV%:       .3      .4     2.5     9.2
TDIF:   LINEAR  QUADRA  LINEAR  LINEAR
TDIT:    84.20   84.60   83.60   84.20
TDII:     692.    244.    3.27    .331


Un    3 SiO2 glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 03:00:25 PM to 12/03/2013 03:09:47 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:  100.645
Average Calculated Oxygen:    .000     Average Atomic Number:   10.773
Average Excess Oxygen:        .000     Average Atomic Weight:   19.971
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    3 SiO2 glass, Results in Elemental Weight Percents

ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   122  46.507  54.165    .004    .004 100.681
   123  46.353  54.176    .004   -.003 100.530
   124  46.612  54.116    .006   -.002 100.731
   125  46.438  54.070    .005   -.002 100.510
   126  46.611  54.154    .006    .002 100.773

AVER:   46.504  54.136    .005    .000 100.645
SDEV:     .112    .043    .001    .003    .119
SERR:     .050    .019    .001    .001
%RSD:      .24     .08   22.98 -944.62
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   689.83  243.44  724.69   83.31

UNKF:    .4075   .2724   .0000   .0000
UNCT:   685.50  248.91     .22     .00
UNBG:      .97    1.28    3.17     .32

ZCOR:   1.1411  1.9876  1.2313  1.2786
KRAW:    .9937  1.0225   .0003   .0000
PKBG:   705.77  195.85    1.07    1.00

TDI%:     .016    .554    .656   2.221
DEV%:       .3      .4     2.9     3.8
TDIF:   LINEAR  LINEAR  LINEAR  LINEAR
TDIT:    83.20   84.00   83.20   83.40
TDII:     686.    250.    3.41    .323
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Mike Jercinovic on February 18, 2014, 06:57:30 AM
One thing here is that it would be nice to have the button (in std assignments) that now says "remove TDI correction" to default to "add TDI correction", so that it would be done for all TDI-specified elements, sor even better, to invoke the TDI correction by default if it has been checked to use it in Special Options (then you can default the button in std assignments to "remove TDI", but if you do click it, then the button should change to "use TDI". 

Right now we still have to click on each element and specify the use of TDI even though we have said to acquire using TDI in Special Options in Acquire.  Every time we run an analysis, we have to do this, even though the stored setup had TDI invoked.  If we do point by point acquisition and do the TDI specification on the first point of the file, it will turn it off again on the next point, so if we want to look at the numbers as we go, we have to redo the TDI on this file (in std. assignments) after each point.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on February 18, 2014, 11:59:37 AM
Quote from: Mike Jercinovic on February 18, 2014, 06:57:30 AM
One thing here is that it would be nice to have the button (in std assignments) that now says "remove TDI correction" to default to "add TDI correction", so that it would be done for all TDI-specified elements, sor even better, to invoke the TDI correction by default if it has been checked to use it in Special Options (then you can default the button in std assignments to "remove TDI", but if you do click it, then the button should change to "use TDI". 

Hi Mike,
Let me make sure I understand what you are asking here...

Are you merely saying you want to be able to "toggle" the TDI correction on and off so one can see the analysis with and without TDI correction?  If so, you can do that from the Analytical | Analysis Options menu dialog as seen here:

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/xnd7hx.jpg)

In fact, every correction Probe for EPMA performs on your data can be "toggled" on and off globally for the entire run from this dialog above.

The Remove TDI Correction button in the Standard Assignments dialog actually removes the TDI assignments from the specified samples, so reversing that is problematic (maybe not so much for the *self* TDI correction, but for the *assigned* TDI correction certainly).

Quote from: Mike Jercinovic
Right now we still have to click on each element and specify the use of TDI even though we have said to acquire using TDI in Special Options in Acquire.  Every time we run an analysis, we have to do this, even though the stored setup had TDI invoked.  If we do point by point acquisition and do the TDI specification on the first point of the file, it will turn it off again on the next point, so if we want to look at the numbers as we go, we have to redo the TDI on this file (in std. assignments) after each point.

If you want to have the TDI assignments used throughout the run simply turn them on in the first sample (even if there's no data) and all subsequent samples should automatically utilize those assignments. 

On the other hand, if you're using sample setups to create new samples, make sure the specified sample setup has the TDI assignments are turned on and they should be brought forward.

The program is designed to automatically turn on the TDI assignments automatically when the sample is acquired as seen here:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/rumwqs.jpg)

Of course one can also select all samples and turn on the TDI assignments that way also. I'm probably missing something, so please let me know if I have...   
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Mike Jercinovic on February 18, 2014, 03:10:11 PM
Well, we are not so much interested in toggling TDI off and on...we just would like TDI to be defaulted to actively being used once we have specified for it to do so.  Maybe it's just our system, but once we have a unknown sample setup, and have specified to use TDI in special options, and specified to use TDI in analysis options (quantitative analysis options), then go and click on the standard assignments (in analyze), click on each element we want to use TDI (U, Th, and Pb) and click the button to "use TDI self calibration correction", click OK, then store this unknown sample as a setup (add to setup), then digitize something and specify to use that setup, TDI is NOT used.  It acquires as a TDI acquisition, but does not calculate the result using TDI until I go back into standard assignments and tell it to use TDI for those elements again.  I just did this with a monazite setup, activating TDI for these elements, then storing that as a setup, then digitizing an analysis using that setup.  When I look at the newly acquired data in analyze, going into standard assignments and clicking on U, then Th, then Pb, all of them now have the buttons selected to NOT use TDI.  So, we dutifully click each one and re-calculate. There is nothing we seem to be able to do to get it to do this properly, so every time we acquire a new unknown sample, we have to activate TDI use for each of these elements.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on February 18, 2014, 03:38:17 PM
Hi Mike,
OK, this is interesting.  When I tried it from the Acquire! window this morning with a new run and a new sample it acquired the TDI data and when I went in to look at the intensities, the TDI assignment was already specified as I showed above.  Maybe you're not "holding your tongue just right"?   ;)

Seriously, let's get to the bottom of this.  Try a new test run and new sample from scratch and see if you can reproduce the problem there.

Note: There is a "feature" that uses the existing TDI assignments for new samples (e.g., some turned off/some turned on), so maybe what you're seeing is based on that feature's behavior?

By the way if you select multiple samples, the default assignments that you see in the dialog are based on the *last* sample selected in the Analyze! sample list.

Edit: are the TDI assignments already made to the sample setup used for the acquisition?
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Mike Jercinovic on February 23, 2014, 08:31:43 AM
It's probably just us.  Here is the first example...
1) start new database
2) new unknown sample (in Acquire), call it monazite setup
3) select new sample from file, navigate to the last database where monazite was run, and pick up an unknown that used, and specified TDI
4) in Acquire, go to special options and make sure that the use TDI button is activated
5) go to analysis options and make sure the use TDI option is checked
6) go to Analyze and then into standard assignments, check whether TDI is activated for U, Th, Pb...it is not, so we activate TDI for each of these elements, click OK with each, then click OK for the main standard assignments window.
7) with this new unknown still highlighted, click to store it as a setup (in Analyze)
8) go to the Automate window and digitize a new unknown
9) digitize a 6-pt grid
10) specify for this unknown to use the just-stored setup (monazite setup)
11) run the newly digitized sample, making sure that the use specified setups button is active
12) the analysis completes, click OK
13) now go to standard assignments for the newly acquired unknown,
14) for U, Th, and Pb, it shows now that DO NOT USE TDI is active, so we have to then activate TDI (self cal) for each of these elements.

Just to be sure it did not actually do the calculated intensities with TDI even though the TDI buttons are not apparently active, you can run analyze before going back to check the standard assignments to see the results, then go into standard assignments and check the use TDI (self) buttons and re-run analyze.  Sure enough, the results change as they should (in this case to very slightly lower the intensities, as counts for these three elements are all slightly increasing with time).

I we now store this new unknown as a setup and use it for digitized samples, the manifestation is the same, TDI will not be active for U, Th, and Pb until we go back into standard assignments and re-specify TDI again.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Mike Jercinovic on February 23, 2014, 08:44:24 AM
Example 2...
1) in Acquire, start a new unknown sample
2) select to specify that you are choosing to base this sample on an existing setup, this setup is an unknown we have just run, and specified for U, Th and Pb to use TDI, then stored that as a setup.
3) make sure in special options that use TDI is selected, it is, and that use TDI in analysis options is also still checked (it is)
4) run one point with start acquisition in the Acquire window
5) once this point has completed (motion ready), go to the Analyze window and to standard assignments, Look at U, Th and Pb, now they have "use TDI (self cal)" selected automatically and we don't have to change anything - it's working great, but...
6) now run a second point from start acquisition in the Acquire window
7) once this point is finished, go to standard assignments in Analyze
8) look at the TDI assignments for U, Th, Pb...now they are all shut OFF (that is, DO NOT USE TDI is now selected), so now for this point, and all subsequent points for this file, we have to always go back into Analyze-standard assignments, and specify for each element (U, Th, Pb) to use TDI.

That's just the way it works for us.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on February 23, 2014, 11:30:21 AM
Hi Mike,
Hmmm.... well I tried using a sample setup from the Automate! window and it seems to work just fine.  I did find a small display issue which is now fixed in v. 10.2.7 so go ahead and update and try tis new version.

It might be necessary for your to create a small test run with just a couple of elements that shows the behavior you are seeing for me to see it also. If you send that to me I will take a closer look...

By the way, you can easily see what the TDI flags are for each sample simply by double-clicking the sample in the Analyze! window (or use the Data button) and in the log window, you will note the line highlighted in red here:

Last (Current) On and Off Peak Count Times:
ELEM:    na ka   si ka   ti ka
BGD:       OFF     OFF     OFF
BGDS:      LIN     LIN     LIN
SPEC:        1       2       3
CRYST:     TAP    LPET    LLIF
ORDER:       1       1       1
ONTIM:   20.00   20.00   20.00
HITIM:    5.00    5.00    5.00
LOTIM:    5.00    5.00    5.00

Miscellaneous Sample Acquisition/Calculation Parameters:
KILO:    15.00   15.00   15.00
ENERGY   1.041   1.740   4.509
EDGE:    1.073   1.839   4.967
Eo/Ec:   13.98    8.16    3.02
STDS:      301     301      22
TDI#:       -1      -1       0


Just FYI: the TDI assignments shown above do not actually occur until the first data point has been acquired (in case the user changes their mind at the last minute!).
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: UofO EPMA Lab on February 24, 2014, 02:51:22 PM
We are running automated TDI acquisitions right now (just using the last unknown sample as the setup basis) and each new sample (combined conditions using both 10 and 50 nA elements) has the TDI assignments properly specified as I watch it running.

So, have you tried acquiring TDI without sample setups, just to see if the TDI assignments are carried forward?

The TDI assignments should also be carried forward with sample setups but we're not using them at the moment so I can't confirm, though it did work in demo mode over the weekend.

Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on March 22, 2014, 11:26:23 AM
I have implemented a new TDI model for ultra beam sensitive samples. It is based on the Log(intensities) as before, but now also includes a log function of time (X axis) in order to perform a full double exponential fit. For certain very beam sensitive samples, this may be a useful addition to our tool kit.

Let's start with a very beam sensitive material, K-375 NIST glass. This material has 10.42 wt% Na, 31.8 wt% Si and some Zn, U and the balance oxygen...

Here is an "analysis" of this quite nasty material *without* any TDI correction:

St  173 Set  24 K-0375 NBS glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 100.  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00

from John Rutledge
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 05/10/2012 02:30:56 AM to 05/10/2012 02:38:17 AM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for p ka

Average Total Oxygen:         .000     Average Total Weight%:   92.534
Average Calculated Oxygen:    .000     Average Atomic Number:   16.903
Average Excess Oxygen:        .000     Average Atomic Weight:   22.922
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

SPEC:       Zn      Ba       U       O
TYPE:     SPEC    SPEC    SPEC    SPEC

AVER:    4.940  10.370    .110  42.320
SDEV:     .000    .000    .000    .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P   SUM 
   371    .207  34.826    .002    .007    .004  92.786
   372    .192  34.695    .005   -.008    .012  92.635
   373    .235  34.488    .008   -.014    .014  92.471
   374    .175  34.505    .001   -.029    .008  92.400
   375    .146  34.501    .001    .013   -.021  92.379

AVER:     .191  34.603    .003   -.006    .003  92.534
SDEV:     .034    .151    .003    .017    .014    .173
SERR:     .015    .068    .001    .008    .006
%RSD:    17.56     .44   86.81 -273.01  412.85

PUBL:   10.420  31.830    n.a.    n.a.    n.a.  99.990
%VAR:   -98.17    8.71     ---     ---     ---
DIFF:  -10.229   2.773     ---     ---     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    76.73   79.39  602.77   66.49   40.15

UNKF:    .0009   .2806   .0000  -.0001   .0000
UNCT:      .92   54.33     .05    -.04     .01
UNBG:     3.34     .16    1.23     .99     .05

ZCOR:   2.1585  1.2330  1.0674  1.1528  1.4789
KRAW:    .0120   .6843   .0001  -.0006   .0001

You will note that the concentration error for Na is around 98 % relative accuracy, when this material treated as a "normal sample"...  Si isn't too great either, but is off 9% relative accuracy or so. So clearly we need some kind of a Time Dependent Intensity (TDI) correction method.   

So, next we will turn on the "traditional" Lin-Log TDI extrapolation which fits a straight line to a plot of the Log(Na) intensities and applies the slope to obtain these results: for Na and Si:

St  173 Set  24 K-0375 NBS glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 100.  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00

from John Rutledge
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 05/10/2012 02:30:56 AM to 05/10/2012 02:38:17 AM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:   92.158
Average Calculated Oxygen:    .000     Average Atomic Number:   16.907
Average Excess Oxygen:        .000     Average Atomic Weight:   22.894
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

SPEC:       Zn      Ba       U       O
TYPE:     SPEC    SPEC    SPEC    SPEC

AVER:    4.940  10.370    .110  42.320
SDEV:     .000    .000    .000    .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P   SUM 
   371    .467  34.359    .001    .007    .004  92.577
   372    .427  33.997    .005   -.008    .012  92.173
   373    .522  33.827    .008   -.014    .014  92.097
   374    .375  34.025    .001   -.029    .008  92.121
   375    .314  33.775    .001    .013   -.021  91.822

AVER:     .421  33.997    .003   -.006    .003  92.158
SDEV:     .081    .229    .003    .017    .014    .271
SERR:     .036    .102    .001    .008    .006
%RSD:    19.19     .67   87.96 -273.01  412.65

PUBL:   10.420  31.830    n.a.    n.a.    n.a.  99.990
%VAR:   -95.96    6.81     ---     ---     ---
DIFF:   -9.999   2.167     ---     ---     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    77.91   79.30  603.55   66.49   40.15

UNKF:    .0019   .2752   .0000  -.0001   .0000
UNCT:     2.06   53.21     .05    -.04     .01
UNBG:     3.34     .16    1.23     .99     .05

ZCOR:   2.1621  1.2355  1.0669  1.1527  1.4764
KRAW:    .0265   .6710   .0001  -.0006   .0001

TDI%:  123.003  -2.060    .962    ----    ----
DEV%:     26.0      .5    33.2    ----    ----
TDIF:  LOG-LIN LOG-LIN LOG-LIN    ----    ----
TDIT:    74.20   74.40   71.80    ----    ----
TDII:     7.71    53.3    1.28    ----    ----

Well, that wasn't too much of a help, was it?  The Na average came up considerably from 0.191 to 0.421 (though far short of the expected published value of 10.42 wt%!), but the Si dropped by even more (34.6 to 33.9 wt% absolute), so the total actually decreased slightly!  Even though, the TDI% correction was over 100% for Na! Why is this?

Lets start by looking at these "traditional" TDI log intensity plots for Na and Si on this K-375 NIST glass...

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/15cgak5.jpg)

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/295u70y.jpg)

Well clearly the Na extrapolation back to zero time is not a good fit at all, while the Si is not quite as bad, we can still see that we have not properly modeled the initial intensity changes in the first few seconds for either element, but particularly Na.  Remember, these are Log(intensity) plots and should therefore plot any exponential process as a straight line, but obviously not with this particular sample under 100 nA conditions!

So now we will try the next tool in our arsenal, the hyper-exponential TDI fit, which assumes that the change in Log(intensity) is modeled by a 2nd order polynomial in lin-log space as seen here in the plots for Na and Si again:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/ifnz2c.jpg)

(https://smf.probesoftware.com/oldpics/i62.tinypic.com/125mmp1.jpg)

Much improved fits it would appear, though Na is still not modeled well in the first seconds of the TDI acquisition, though Si is less poorly modeled. What about the quant results?

St  173 Set  24 K-0375 NBS glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 100.  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00

from John Rutledge
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 05/10/2012 02:30:56 AM to 05/10/2012 02:38:17 AM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:   91.991
Average Calculated Oxygen:    .000     Average Atomic Number:   16.892
Average Excess Oxygen:        .000     Average Atomic Weight:   22.858
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

SPEC:       Zn      Ba       U       O
TYPE:     SPEC    SPEC    SPEC    SPEC

AVER:    4.940  10.370    .110  42.320
SDEV:     .000    .000    .000    .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P   SUM 
   371   1.266  33.478    .001    .007    .004  92.496
   372   1.012  33.272    .005   -.008    .012  92.034
   373   1.331  33.076    .008   -.014    .014  92.155
   374    .902  32.973    .001   -.029    .008  91.596
   375    .744  33.197    .001    .013   -.021  91.675

AVER:    1.051  33.199    .003   -.006    .003  91.991
SDEV:     .246    .193    .003    .017    .014    .367
SERR:     .110    .086    .001    .008    .006
%RSD:    23.41     .58   87.97 -273.02  413.22

PUBL:   10.420  31.830    n.a.    n.a.    n.a.  99.990
%VAR:   -89.91    4.30     ---     ---     ---
DIFF:   -9.369   1.369     ---     ---     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    77.91   79.30  603.55   66.49   40.15

UNKF:    .0049   .2677   .0000  -.0001   .0000
UNCT:     5.15   51.77     .05    -.04     .01
UNBG:     3.34     .16    1.23     .99     .05

ZCOR:   2.1621  1.2400  1.0660  1.1524  1.4730
KRAW:    .0662   .6529   .0001  -.0006   .0001
PKBG:     2.54  320.00    1.04     .97    1.26

TDI%:  454.003  -4.704    .962    ----    ----
DEV%:     15.8      .4    33.2    ----    ----
TDIF:  HYP-EXP HYP-EXP LOG-LIN    ----    ----
TDIT:    74.20   74.40   71.80    ----    ----
TDII:     14.5    52.3    1.28    ----    ----

Now our Na TDI% correction is over 450%, but we are still off by 90% in relative accuracy as we've only gone from 0.42 wt% Na in the traditional extrapolation to around 1 wt% with this "hyper-exponential" TDI fit, and we are therefore still under correcting this extremely beam sensitive material...
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on March 22, 2014, 11:34:37 AM
So, here is where I would like to introduce a new TDI extrapolation model, the Logarithmic extrapolation or log-log fit or "double-exponential" model. The previously existing linear and hyper-exponential TDI methods are summarized in the previous post. Let's take a look first at the TDI plots using this new double exponential fit:

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/2v2ve4z.jpg)

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/2q8t742.jpg)

The extrapolations are much improved, at least to the eye, so now let's look at the quant results again:

St  173 Set  24 K-0375 NBS glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 100.  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00

from John Rutledge
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 05/10/2012 02:30:56 AM to 05/10/2012 02:38:17 AM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:   97.309
Average Calculated Oxygen:    .000     Average Atomic Number:   16.572
Average Excess Oxygen:        .000     Average Atomic Weight:   22.868
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

SPEC:       Zn      Ba       U       O
TYPE:     SPEC    SPEC    SPEC    SPEC

AVER:    4.940  10.370    .110  42.320
SDEV:     .000    .000    .000    .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P   SUM 
   371   7.358  33.896    .001    .007    .004  99.006
   372   5.900  33.248    .005   -.008    .012  96.897
   373   6.969  32.999    .008   -.014    .014  97.717
   374   5.572  33.286    .001   -.029    .008  96.579
   375   5.781  32.830    .001    .013   -.021  96.344

AVER:    6.316  33.252    .003   -.006    .003  97.309
SDEV:     .795    .406    .003    .017    .014   1.082
SERR:     .355    .181    .001    .008    .006
%RSD:    12.58    1.22   87.96 -272.99  412.40

PUBL:   10.420  31.830    n.a.    n.a.    n.a.  99.990
%VAR:   -39.39    4.47     ---     ---     ---
DIFF:   -4.104   1.422     ---     ---     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    77.91   79.30  603.55   66.49   40.15

UNKF:    .0302   .2643   .0000  -.0001   .0000
UNCT:    32.04   51.11     .05    -.04     .01
UNBG:     3.34     .16    1.23     .99     .05

ZCOR:   2.0906  1.2580  1.0656  1.1519  1.4697
KRAW:    .4113   .6446   .0001  -.0006   .0001
PKBG:    10.59  315.92    1.04     .97    1.26

TDI%: 3412.187  -5.918    .962    ----    ----
DEV%:     11.8      .4    33.2    ----    ----
TDIF:  LOG-LOG LOG-LOG LOG-LIN    ----    ----
TDIT:    74.20   74.40   71.80    ----    ----
TDII:     31.8    51.1    1.28    ----    ----

Ok, so that is better and now we are "only" off in accuracy for Na by around 40% relative (6.3 wt% compared to the published value of 10.4 wt%). Interestingly our Si value is very slightly worse than the "hyper-exponential" fit.  The total averages 97% which is not good, but much better than before.

Are we done, well maybe... if we look again at the log-log plots it does appear that we are still slightly under estimating the TDI correction in the first few seconds. What can we do?

Well let's try "weighting" the first few data points in the acquisition, since these measurements should obviously be the closer to the zero time intensity, by utilizing this option in the Analytical | Analysis Options dialog as seen here:


(https://smf.probesoftware.com/oldpics/i57.tinypic.com/9ps1af.jpg)

By entering a value to "2", we weight the first point times 2, if we enter say "3" we weight the first point times 3 and the second point times 2, if we enter a "4" we weight the first point 4 times, second point 3 times, third point 2 times, etc., etc. Here is what we obtain quantitatively with just weighting the first point times 2:

St  173 Set  24 K-0375 NBS glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 100.  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00

from John Rutledge
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 05/10/2012 02:30:56 AM to 05/10/2012 02:38:17 AM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction
WARNING- Using Time Dependent Intensity (TDI) Weighting Factor of  2

Average Total Oxygen:         .000     Average Total Weight%:   98.071
Average Calculated Oxygen:    .000     Average Atomic Number:   16.519
Average Excess Oxygen:        .000     Average Atomic Weight:   22.855
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

SPEC:       Zn      Ba       U       O
TYPE:     SPEC    SPEC    SPEC    SPEC

AVER:    4.940  10.370    .110  42.320
SDEV:     .000    .000    .000    .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P   SUM 
   371   8.221  33.420    .001    .007    .004  99.394
   372   7.202  33.052    .005   -.008    .012  98.003
   373   8.104  32.753    .008   -.014    .014  98.605
   374   6.835  32.904    .001   -.029    .008  97.459
   375   6.694  32.465    .001    .013   -.021  96.893

AVER:    7.411  32.919    .003   -.006    .003  98.071
SDEV:     .712    .354    .003    .017    .014    .975
SERR:     .318    .159    .001    .008    .006
%RSD:     9.60    1.08   88.39 -272.99  412.33

PUBL:   10.420  31.830    n.a.    n.a.    n.a.  99.990
%VAR:   -28.88    3.42     ---     ---     ---
DIFF:   -3.009   1.089     ---     ---     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    77.82   79.39  604.17   66.49   40.15

UNKF:    .0356   .2607   .0000  -.0001   .0000
UNCT:    37.74   50.48     .05    -.04     .01
UNBG:     3.34     .16    1.23     .99     .05

ZCOR:   2.0801  1.2625  1.0652  1.1517  1.4679
KRAW:    .4849   .6358   .0001  -.0006   .0001
PKBG:    12.30  311.92    1.04     .97    1.26

TDI%: 4041.216  -7.094   1.268    ----    ----
DEV%:     12.1      .4    32.6    ----    ----
TDIF:  LOG-LOG LOG-LOG LOG-LIN    ----    ----
TDIT:    74.20   74.40   71.80    ----    ----
TDII:     37.6    50.5    1.29    ----    ----

As you can see, there is further improvement. Our total average is now 98%, our Na value is now 7.4 wt% compared to the published value of 10.4 wt%- still a 28% error, but note that the correction is approximately 4000%!  Yes, you read that correctly- over 4000% correction.  The Si is now within 3.4 % relative accuracy.

Ok, let's try with a weighting of "4" and see what that does:

St  173 Set  24 K-0375 NBS glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 100.  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00

from John Rutledge
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 05/10/2012 02:30:56 AM to 05/10/2012 02:38:17 AM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction
WARNING- Using Time Dependent Intensity (TDI) Weighting Factor of  4

Average Total Oxygen:         .000     Average Total Weight%:   98.809
Average Calculated Oxygen:    .000     Average Atomic Number:   16.471
Average Excess Oxygen:        .000     Average Atomic Weight:   22.847
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

SPEC:       Zn      Ba       U       O
TYPE:     SPEC    SPEC    SPEC    SPEC

AVER:    4.940  10.370    .110  42.320
SDEV:     .000    .000    .000    .000

ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P   SUM 
   371   9.103  33.145    .001    .007    .004 100.000
   372   8.228  32.857    .005   -.008    .012  98.834
   373   9.077  32.640    .008   -.014    .014  99.465
   374   7.914  32.672    .001   -.029    .008  98.307
   375   7.449  32.258    .001    .013   -.021  97.441

AVER:    8.354  32.715    .003   -.006    .003  98.809
SDEV:     .726    .325    .003    .017    .014    .997
SERR:     .325    .145    .001    .008    .006
%RSD:     8.70     .99   88.90 -273.00  412.36

PUBL:   10.420  31.830    n.a.    n.a.    n.a.  99.990
%VAR:   -19.83    2.78     ---     ---     ---
DIFF:   -2.066    .885     ---     ---     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    77.78   79.47  604.98   66.49   40.15

UNKF:    .0404   .2584   .0000  -.0001   .0000
UNCT:    42.72   50.07     .05    -.04     .01
UNBG:     3.34     .16    1.23     .99     .05

ZCOR:   2.0704  1.2661  1.0649  1.1516  1.4666
KRAW:    .5492   .6301   .0001  -.0006   .0001
PKBG:    13.79  309.41    1.04     .97    1.26

TDI%: 4588.661  -7.842   1.467    ----    ----
DEV%:     11.2      .4    31.9    ----    ----
TDIF:  LOG-LOG LOG-LOG LOG-LIN    ----    ----
TDIT:    74.20   74.40   71.80    ----    ----
TDII:     42.6    50.1    1.29    ----    ----

OK, so even more improvement! Our total average is now almost 99% and our relative accuracy error on Na and Si is now 20% and 2.8%. In the case of Na, the TDI% correction is now over 4500%!

We could keep going, but I think we all get the point... which is: we would most likely never want to perform such an acquisition on such a beam sensitive sample at such a high (100 nA) beam current!  But... if we absolutely had to, we could give it a go using these new TDI tools!

By the way, here is the Na TDI plot with the 4 times point weighting:

(https://smf.probesoftware.com/oldpics/i58.tinypic.com/e9vjvr.jpg)

And here are the quantitative results with 10x weighting log-log fit to the first TDI intervals:

St  173 Set  24 K-0375 NBS glass, Results in Elemental Weight Percents

ELEM:       Na      Si      Ca      Fe       P      Zn      Ba       U       O
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    SPEC    SPEC    SPEC    SPEC
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    20.00   20.00   20.00   20.00   20.00
BEAM:   100.72  100.72  100.72  100.72  100.72

ELEM:       Na      Si      Ca      Fe       P      Zn      Ba       U       O   SUM 
   371   9.642  32.967    .001    .007    .004   4.940  10.370    .110  42.320 100.361
   372   8.822  32.773    .005   -.008    .012   4.940  10.370    .110  42.320  99.344
   373   9.654  32.545    .008   -.014    .014   4.940  10.370    .110  42.320  99.947
   374   8.532  32.488    .001   -.029    .008   4.940  10.370    .110  42.320  98.740
   375   7.915  32.109    .001    .013   -.021   4.940  10.370    .110  42.320  97.757

AVER:    8.913  32.576    .003   -.006    .003   4.940  10.370    .110  42.320  99.230
SDEV:     .747    .323    .003    .017    .014    .000    .000    .000    .000   1.027
SERR:     .334    .145    .001    .008    .006    .000    .000    .000    .000
%RSD:     8.38     .99   89.41 -273.00  412.34     .00     .00     .00     .00

PUBL:   10.420  31.830    n.a.    n.a.    n.a.   4.940  10.370    .110  42.320  99.990
%VAR:   -14.46    2.34     ---     ---     ---     .00     .00     .00     .00
DIFF:   -1.507    .746     ---     ---     ---    .000    .000    .000    .000


Maybe not perfect, but certainly better than the alternative! 

Edit by John: The observant eye will note that the Na numbers decrease with each point acquisition in the last analysis above. This is due to the beam diameter being 10 um and the points 10 um apart, therefore each acquisition effectively pre-heats the subsequent acquisition volume which reduces the "incubation" time" and therefore decreases the Na intensity more quickly.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: Mike Jercinovic on March 22, 2014, 03:45:02 PM
Nice!  This will be very useful.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on March 22, 2014, 06:33:28 PM
Hi Mike,
Thanks, though in some respects I feel this is a "two steps forward/one step back" sort of thing.

As you know, due to "incubation" effects as described here:

http://smf.probesoftware.com/index.php?topic=116.msg454#msg454

This new fit method will now allow the user to not only "under fit" the TDI data, but now, also to "over fit" it!   :o
john
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on April 17, 2014, 12:59:16 PM
I would be very interested in seeing posted user examples of their TDI corrections on beam sensitive samples using this new "double exponential" extrapolation now available in Probe for EPMA 10.3.4...

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/a0fczs.jpg)
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: AndrewLocock on April 18, 2024, 08:55:45 AM
With regard to time-dependent-intensity corrections, I gather that one can set the time-weighting option from 1 to 10 in the Analytical options.
Question: If I have only 6 intervals in my TDI curve, what does a time-weighting of 10 actually mean?

Comment: I appear to achieve the best accuracy by adjusting the operating conditions (nA, beam diameter, peak count time) so that the TDI curve stays in the log-linear regime.
It appears that for my hydrous natural dacitic-rhyolitic glasses, that time-weighting of a linear model may provide more accurate results than use of the unweighted log-quadratic (hyperexponential) model.

For anhydrous basaltic glasses at our normal operating conditions, TDI makes very little difference.
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on April 18, 2024, 10:02:46 AM
Quote from: AndrewLocock on April 18, 2024, 08:55:45 AM
With regard to time-dependent-intensity corrections, I gather that one can set the time-weighting option from 1 to 10 in the Analytical options.
Question: If I have only 6 intervals in my TDI curve, what does a time-weighting of 10 actually mean?

Great question.

For those wondering, Andrew is asking about this feature in the Analytical | Analysis Options dialog:

(https://smf.probesoftware.com/gallery/1_18_04_24_9_47_22.png)

Now this option is briefly explained in the PFE User's Reference:

(https://smf.probesoftware.com/gallery/1_18_04_24_9_47_48.png)

but who reads manuals these days!    ;D

So here is the source code that should make it more clear:

pointweight% = 1
If Not UseVolElTimeWeightingFlag Then Exit Sub
If VolElTimeWeightingFactor% < 2 Then Exit Sub

' Calculate point weighting
If ipoint% <= VolElTimeWeightingFactor Then
pointweight% = ipoint% * VolElTimeWeightingFactor% / ipoint% ^ 2
End If


Basically, for each of the measured TDI intensities, a weighting factor is calculated (default = 1), and when the points are added to the regression array, they are weighted according to the code above. If you specify a weighting value larger than the number of points you have, there is basically no effect.

Note that we also fixed a broken Help link in the above dialog and also added better documentation of the TDI parameters in the Report format output as suggested by Andrew (update Probe for EPMA using the Help menu as usual):

QuoteThe intensity data was corrected for Time Dependent Intensity (TDI) loss (or gain) using a self calibrated correction for Na ka, K ka, Ti ka, Si ka, O ka.
The TDI data was fit with a Time Weighting Factor of 2

A complete example of the Report format text is here (I pasted it into a code control because it so long and detailed):


Un   19 NBS K-411 mineral glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 10.0  Beam Size =   20
(Magnification (analytical) =  20000),        Beam Mode = Analog  Spot
(Magnification (default) =      600, Magnification (imaging) =    600)
Image Shift (X,Y):                                         .00,    .00

Compositional analyses were acquired on an electron microprobe equipped with 5 tunable wavelength dispersive spectrometers.

Operating conditions were 40 degrees takeoff angle, and a beam energy of 15 keV.
The beam current was 10 nA, and the beam diameter was 20 microns.

Elements were acquired using analyzing crystals LLIF for Ti ka, Fe ka, Mn ka, Ca ka, PET for Cl ka, Ba la, K ka, TAP for Na ka, Mg ka, LTAP for F ka, Si ka, Al ka, TAP for Na ka, Mg ka, and PC1 for O ka.

The standards were MgO synthetic for Mg ka, O ka, TiO2 synthetic for Ti ka, MnO synthetic for Mn ka, NBS K-411 mineral glass for Si ka, Ca10(PO4)6Cl2 (halogen corrected) for Cl ka, Nepheline (partial anal.) for Na ka, Al ka, Diopside (Chesterman) for Ca ka, Orthoclase MAD-10 for K ka, Magnetite U.C. #3380 for Fe ka, and BaF2 (barium fluoride) for Ba la, F ka.

MgO synthetic
1. UCB # M3567, 99.8%, EPMA (UCB): Ca ~ 0.2%
2. C. M. Taylor, 99.98%, EPMA (UCB) Ca ~ 0.02%

SiO2 synthetic
Specimen from ESPI, 99.99%, EPMA (UCB): Al2O3 ~ 0.01%
Catalog #K4699M
Atomic Absorption (Chris Lewis):
Al=15 ppm +/- 5
Fe=6 ppm +/- 3
Mn=1.5 ppm +/- 0.3
Na=5 ppm +/- 3
Li= 2.3 ppm +/- 0.2

TiO2 synthetic
Specimen from Mimports, Lafayette, CA
Assumed stoichiometric
EPMA (UCB): Al2O3=0.02 (interference corrected)

Fluor-phlogopite (halogen corrected)
Grown by S. Wones, Univ of Tenn
(applied F=O equivalence)

Ca10(PO4)6Cl2 (halogen corrected)
Specimen from Alan Baumer, Univ of Nice, France
Hydrothermally grown
See Argiolas and Baumer, Can. Min., v. 16, pp 285-290, 1978

Nepheline (partial anal.)
Analysis by ISE Carmichael (Na, K)
Ca = 750 PPM (EPMA by JJD)

Diopside (Chesterman)
Twin Lakes, Fresno Co., CA
From Charles Chesterman (Ca Div. Mines)

Orthoclase MAD-10
Specimen from Chuck Taylor
Fe2O3=2.01% (EPMA by J. Donovan) (as FeO=1.88% + 0.13% O)
K2O=15.49%, Na2O=1.07% (Flame photometry by J. Hampel)
BaO=0.06%, Rb2O=0.03% (EPMA by J. Donovan)
Sr=12 ppm, Rb=600 ppm (Isotope dilution)

Magnetite U.C. #3380
Port Henry, NY
FeO=30.93% (ISE Carmichael)
Fe2O3=68.85%, FeO=30.92% (as FeO=92.73% + 6.90% O)
(Total FeO=92.73%, by EPMA, JJD)

MnO synthetic
Specimen from Michael Wittenauer (Purdue Univ.)
Starting mat'l 99.999%, SM # 317, 'skull melt' process
Mat. Res. Bull. 15, p 571, 1980
(possible intergrowths of Mn3O4 and small inclusions of Mn metal)
EPMA (UCB): SiO2=0.00, FeO=0.00, CaO=0.00, Al2O3=0

NiO synthetic
1. Specimen from Michael Wittenauer (Purdue Univ.)
Starting mat'l 99.999%, Boule WI, Arc Transfer
2. Specimen from G. Czemanske, USGS (Oct 12, 1984)
EPMA (UCB): FeO=0.05%
-----------------------------
All material assumed stoichiometric

NBS K-412 mineral glass
SRM 470, NIST
C.M. Taylor (Photometry?) FeO 2.77, Fe2O3 8.15
Total as FeO 10.10, Excess O 0.815
Na = 430 PPM (EPMA by JJD)

NBS K-411 mineral glass
SRM 470, NIST
C.M. Taylor (Photometry?) FeO 4.39, Fe2O3 11.23
Total as FeO 14.49, Excess O 1.12

BIR-1G Glass
USGS
see Meeker, et. al. "A Basalt Glass Standard for Multiple Microanalytical Techniques"

BaF2 (barium fluoride)
Single crystal, fluorescent

The counting time was 10 seconds for Cl ka, Ti ka, Mn ka, 20 seconds for K ka, Ba la, Ca ka, Si ka, Al ka, 40 seconds for F ka, Fe ka, 60 seconds for Na ka, Mg ka, and 120 seconds for O ka.

The intensity data was corrected for Time Dependent Intensity (TDI) loss (or gain) using a self calibrated correction for Na ka, K ka, Ti ka, Si ka, O ka.
The TDI data was fit with a Time Weighting Factor of 2

The off peak counting time was 10 seconds for Cl ka, Mn ka, Ti ka, and 20 seconds for Ba la, F ka, K ka, O ka.

Off Peak correction method was Linear for Mn ka, Cl ka, Ba la, F ka, K ka, Low Only for Ti ka, and Exponential for O ka.

The MAN background intensity data was calibrated and continuum absorption corrected for Na ka, Fe ka, Ca ka, Si ka, Al ka, Mg ka.

Donovan, J. J., & Tingle, T. N. (1996). An improved mean atomic number background correction for quantitative microanalysis. Microscopy and Microanalysis, 2(1), 1-7.
Donovan, J. J., Singer, J. W., & Armstrong, J. T. (2016). A new EPMA method for fast trace element analysis in simple matrices. American Mineralogist, 101(8), 1839-1853.

Unknown and standard intensities were corrected for deadtime using the Normal (traditional single term) correction method.

Donovan, J. J., Moy, A., von der Handt, A., Gainsforth, Z., Maner, J. L., Nachlas, W., & Fournelle, J. (2023). A New Method for Dead Time Calibration and a New Expression for Correction of WDS Intensities for Microanalysis. Microscopy and Microanalysis, 29(3), 1096-1110.

Standard intensities were corrected for standard drift over time on an element by element basis.

Interference corrections were applied to Ba for interference by Ti, and to Ti for interference by Ba.

Donovan, J. J., Snyder, D. A., & Rivers, M. L. (1992). An improved interference correction for trace element analysis. In Proceedings of the Annual Meeting-Electron Microscopy Society of America (pp. 1646-1646). San Francisco Press.

Empirical Mass Absorption Coefficients were utilized to correct x-ray intensities for matrix corrections.

Bastin, G. F., & Heijligers, H. J. M. (1991). Quantitative electron probe microanalysis of ultra-light elements (boron-oxygen). In Electron probe quantitation (pp. 145-161). Boston, MA: Springer US.

Bastin, G. F., & Heijligers, H. J. M. (1992). Present and future of light element analysis with electron beam instruments. Microbeam Analysis, 1(2), 61-73.

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Na      ka      Na  5.6089e+02
      Na      ka      K   3.8110e+03
      Na      ka      Cl  2.5391e+03
      Na      ka      Ba  7.6213e+03
      Na      ka      F   5.1229e+03
      Na      ka      Ti  5.2439e+03
      Na      ka      Fe  8.1986e+03
      Na      ka      Mn  7.2518e+03
      Na      ka      Ca  4.3573e+03
      Na      ka      Si  1.4049e+03
      Na      ka      Al  1.0667e+03
      Na      ka      Mg  8.1441e+02
      Na      ka      O   4.1515e+03
      Na      ka      H   5.9317e+00
      K       ka      Na  3.7714e+02
      K       ka      K   1.7109e+02
      K       ka      Cl  1.1539e+03
      K       ka      Ba  7.2049e+02
      K       ka      F   2.1534e+02
      K       ka      Ti  2.4971e+02
      K       ka      Fe  4.1167e+02
      K       ka      Mn  3.5594e+02
      K       ka      Ca  1.9889e+02
      K       ka      Si  7.4506e+02
      K       ka      Al  5.9083e+02
      K       ka      Mg  5.0887e+02
      K       ka      O   1.6416e+02
      K       ka      H   1.1806e-01
      Cl      ka      Na  7.3634e+02
      Cl      ka      K   3.2806e+02
      Cl      ka      Cl  2.1561e+02
      Cl      ka      Ba  1.2824e+03
      Cl      ka      F   4.2282e+02
      Cl      ka      Ti  4.7326e+02
      Cl      ka      Fe  7.8172e+02
      Cl      ka      Mn  6.7972e+02
      Cl      ka      Ca  3.7594e+02
      Cl      ka      Si  1.4010e+03
      Cl      ka      Al  1.1255e+03
      Cl      ka      Mg  9.8203e+02
      Cl      ka      O   3.2567e+02
      Cl      ka      H   2.6576e-01
      Ba      la      Na  1.6022e+02
      Ba      la      K   7.2502e+02
      Ba      la      Cl  5.2953e+02
      Ba      la      Ba  3.3617e+02
      Ba      la      F   9.0427e+01
      Ba      la      Ti  1.1151e+02
      Ba      la      Fe  1.8314e+02
      Ba      la      Mn  1.5795e+02
      Ba      la      Ca  8.3453e+02
      Ba      la      Si  3.2826e+02
      Ba      la      Al  2.5758e+02
      Ba      la      Mg  2.1898e+02
      Ba      la      O   6.7822e+01
      Ba      la      H   4.2840e-02
      F       ka      Na  1.8327e+03
      F       ka      K   1.0658e+04
      F       ka      Cl  7.5904e+03
      F       ka      Ba  3.1554e+03
      F       ka      F   9.2209e+02
      F       ka      Ti  1.4588e+04
      F       ka      Fe  2.3374e+03
      F       ka      Mn  1.6117e+04
      F       ka      Ca  1.2415e+04
      F       ka      Si  4.2952e+03
      F       ka      Al  3.4208e+03
      F       ka      Mg  2.6263e+03
      F       ka      O   1.2440e+04
      F       ka      H   2.4805e+01
      Ti      ka      Na  1.5590e+02
      Ti      ka      K   7.0770e+02
      Ti      ka      Cl  5.1645e+02
      Ti      ka      Ba  3.2787e+02
      Ti      ka      F   8.7938e+01
      Ti      ka      Ti  1.0869e+02
      Ti      ka      Fe  1.7855e+02
      Ti      ka      Mn  1.5394e+02
      Ti      ka      Ca  8.1470e+02
      Ti      ka      Si  3.1977e+02
      Ti      ka      Al  2.5083e+02
      Ti      ka      Mg  2.1325e+02
      Ti      ka      O   6.5919e+01
      Ti      ka      H   4.1490e-02
      Fe      ka      Na  5.5397e+01
      Fe      ka      K   2.7665e+02
      Fe      ka      Cl  1.9695e+02
      Fe      ka      Ba  6.1414e+02
      Fe      ka      F   3.0620e+01
      Fe      ka      Ti  3.7689e+02
      Fe      ka      Fe  6.8270e+01
      Fe      ka      Mn  5.9704e+01
      Fe      ka      Ca  3.2161e+02
      Fe      ka      Si  1.1782e+02
      Fe      ka      Al  9.1605e+01
      Fe      ka      Mg  7.6877e+01
      Fe      ka      O   2.2548e+01
      Fe      ka      H   1.2590e-02
      Mn      ka      Na  6.8522e+01
      Mn      ka      K   3.3731e+02
      Mn      ka      Cl  2.4097e+02
      Mn      ka      Ba  6.5921e+02
      Mn      ka      F   3.8047e+01
      Mn      ka      Ti  4.5531e+02
      Mn      ka      Fe  8.3286e+01
      Mn      ka      Mn  7.2508e+01
      Mn      ka      Ca  3.9062e+02
      Mn      ka      Si  1.4510e+02
      Mn      ka      Al  1.1272e+02
      Mn      ka      Mg  9.4808e+01
      Mn      ka      O   2.8131e+01
      Mn      ka      H   1.6010e-02
      Ca      ka      Na  2.7733e+02
      Ca      ka      K   1.1737e+03
      Ca      ka      Cl  8.7515e+02
      Ca      ka      Ba  5.5026e+02
      Ca      ka      F   1.5790e+02
      Ca      ka      Ti  1.8677e+02
      Ca      ka      Fe  3.0742e+02
      Ca      ka      Mn  2.6528e+02
      Ca      ka      Ca  1.4983e+02
      Ca      ka      Si  5.5579e+02
      Ca      ka      Al  4.3892e+02
      Ca      ka      Mg  3.7616e+02
      Ca      ka      O   1.1972e+02
      Ca      ka      H   8.1770e-02
      Si      ka      Na  2.2375e+03
      Si      ka      K   9.7768e+02
      Si      ka      Cl  6.5835e+02
      Si      ka      Ba  3.3056e+03
      Si      ka      F   1.3201e+03
      Si      ka      Ti  1.4132e+03
      Si      ka      Fe  2.3053e+03
      Si      ka      Mn  2.0250e+03
      Si      ka      Ca  1.1465e+03
      Si      ka      Si  3.5048e+02
      Si      ka      Al  3.2132e+03
      Si      ka      Mg  2.9015e+03
      Si      ka      O   1.0337e+03
      Si      ka      H   1.0618e+00
      Al      ka      Na  3.3597e+03
      Al      ka      K   1.4794e+03
      Al      ka      Cl  9.9433e+02
      Al      ka      Ba  4.6512e+03
      Al      ka      F   2.0277e+03
      Al      ka      Ti  2.1374e+03
      Al      ka      Fe  3.4392e+03
      Al      ka      Mn  3.0278e+03
      Al      ka      Ca  1.7548e+03
      Al      ka      Si  5.4409e+02
      Al      ka      Al  4.0218e+02
      Al      ka      Mg  4.2884e+03
      Al      ka      O   1.5979e+03
      Al      ka      H   1.8043e+00
      Mg      ka      Na  5.2018e+03
      Mg      ka      K   2.3234e+03
      Mg      ka      Cl  1.5604e+03
      Mg      ka      Ba  6.3391e+03
      Mg      ka      F   3.1803e+03
      Mg      ka      Ti  3.2972e+03
      Mg      ka      Fe  5.2394e+03
      Mg      ka      Mn  4.6163e+03
      Mg      ka      Ca  2.7124e+03
      Mg      ka      Si  8.5871e+02
      Mg      ka      Al  6.3956e+02
      Mg      ka      Mg  4.8748e+02
      Mg      ka      O   2.5312e+03
      Mg      ka      H   3.1956e+00
      O       ka      Na  3.6300e+03 *
      O       ka      K   1.9369e+04
      O       ka      Cl  1.4300e+04 *
      O       ka      Ba  4.5194e+03
      O       ka      F   1.8500e+03 *
      O       ka      Ti  1.9900e+04 *
      O       ka      Fe  4.0000e+03 *
      O       ka      Mn  3.4700e+03 *
      O       ka      Ca  2.4600e+04 *
      O       ka      Si  8.7900e+03 *
      O       ka      Al  6.7200e+03 *
      O       ka      Mg  5.1700e+03 *
      O       ka      O   1.1999e+03
      O       ka      H   5.7430e+01
* indicates empirical MAC

Empirical Mass Absorption Coefficients From:
C:\ProgramData\Probe Software\Probe for EPMA\EMPMAC.DAT

  Z-LINE   X-RAY Z-ABSOR     MAC
      O       ka      Na  3.6300e+03    Love et al. (1974)
      O       ka      Cl  1.4300e+04    Love et al. (1974)
      O       ka      F   1.8500e+03    Love et al. (1974)
      O       ka      Ti  1.9900e+04    Bastin  (1992)
      O       ka      Fe  4.0000e+03    Bastin  (1992)
      O       ka      Mn  3.4700e+03    Bastin  (1992)
      O       ka      Ca  2.4600e+04    Love et al. (1974)
      O       ka      Si  8.7900e+03    Bastin  (1992)
      O       ka      Al  6.7200e+03    Bastin  (1992)
      O       ka      Mg  5.1700e+03    Bastin  (1992)

Area Peak Factors were utilized to correct x-ray intensities for wavelength peak shift and/or shape changes for compound compositions by summing binary APF values.

Bastin, G. F., & Heijligers, H. J. M. (1986). Quantitative electron probe microanalysis of carbon in binary carbides. I—principles and procedures. X-ray Spectrometry, 15(2), 135-141.

Empirical Area Peak Factors (APF) From:
C:\ProgramData\Probe Software\Probe for EPMA\EMPAPF.DAT

  Z-LINE   X-RAY Z-ABSOR       APF   RE-NORM
      O       ka      Ti     .9796    1.0000    TiO2/Fe2O3/WSi/59.8
      O       ka      Fe     .9962    1.0000    Fe3O4/Fe2O3/WSi/59.8
      O       ka      Ca     .9700    1.0000    ----/Fe2O3/WSi/59.8
      O       ka      Si    1.0444    1.0000    SiO2/Fe2O3/WSi/59.8, Bastin
      O       ka      Al    1.0213    1.0000    Al2O3/Fe2O3/WSi/59.8, Bastin

Results are the average of 12 points and detection limits ranged from .006 weight percent for Mg ka to .007 weight percent for Si ka to .016 weight percent for Fe ka to .064 weight percent for Ti ka to .080 weight percent for Ba la.

Analytical sensitivity (at the 99% confidence level) ranged from .212 percent relative for O ka to .421 percent relative for Mg ka to 26.044 percent relative for Al ka to 256.124 percent relative for F ka to 2281103.000 percent relative for Ba la.

Goldstein, J. I. (1992). Scanning electron and x-ray microanalysis. A text for biologists, materials scientists, and geologists, 395-416.

Oxygen equivalent from halogens (F/Cl/Br/I), was not subtracted in the matrix correction.

Moy, A., Fournelle, J., Nachlas, W., Dungan, M., Locock, A., Bullock, E., ... & Handt, A. V. D. (2023). On the Importance of Including All Elements in the EPMA Matrix Correction.


The exponential or polynomial background fit was utilized.

Donovan, J. J., Lowers, H. A., & Rusk, B. G. (2011). Improved electron probe microanalysis of trace elements in quartz. American Mineralogist, 96(2-3), 274-282.

The matrix correction method was ZAF or Phi-Rho-Z Calculations and the mass absorption coefficients dataset was LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV.

The ZAF or Phi-Rho-Z algorithm utilized was Armstrong/Love Scott prZ (default).

Armstrong, J. T. (1988). Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and phi-rho-z procedures. Analysis microbeam.


By the way, this topic is a little out of date, so please also check out this topic on TDI methods also:

https://smf.probesoftware.com/index.php?topic=11.0
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: AndrewLocock on April 18, 2024, 10:43:05 AM
Quote from: John Donovan on April 18, 2024, 10:02:46 AM]Basically, for each of the measured TDI intensities, a weighting factor is calculated (default = 1), and when the points are added to the regression array, they are weighted according to the code above.
If you specify a weighting value larger than the number of points you have, there is basically no effect.

This is not quite what I see in my data.

For the average of 6 analyses measured at 15 kV, 30 nA, 5 micron beam-diameter in Lipari obsidian (Kuehn et al. 2011),
a linear model for time-dependent-intensity corrections (40 s on peak, divided into 8 interval points)
yielded the following mean values for Na2O (wt%), with standard deviations of the last decimal points given in parentheses:


Time-weighting factor     Na2O (wt%)
none                             3.54(9)
1                                  3.54(9)
2                                  3.66(10)
3                                  3.72(9)
4                                  3.76(10)
5                                  3.79(11)
6                                  3.82(11)
7                                  3.84(11)
8                                  3.89(11)
9                                  3.90(11)
10                                3.91(11)


It appears to me that if I specify a weighting value larger than the number of interval points, there is still a perceptible effect.
In this case, the resultant concentration of Na2O in wt% follows a power-law curve of the form:
f(x) = 3.5442 x0.0429 with R2 = 0.995.

Thanks,
Andrew
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on April 18, 2024, 11:10:13 AM
Quote from: AndrewLocock on April 18, 2024, 10:43:05 AM
quote author=John Donovan link=topic=116.msg12569#msg12569 date=1713459766]
QuoteBasically, for each of the measured TDI intensities, a weighting factor is calculated (default = 1), and when the points are added to the regression array, they are weighted according to the code above.
If you specify a weighting value larger than the number of points you have, there is basically no effect.

This is not quite what I see in my data.

For the average of 6 analyses measured at 15 kV, 30 nA, 5 micron beam-diameter in Lipari obsidian (Kuehn et al. 2011),
a linear model for time-dependent-intensity corrections (40 s on peak, divided into 8 interval points)
yielded the following mean values for Na2O (wt%), with standard deviations of the last decimal points given in parentheses:


Time-weighting factor     Na2O (wt%)
none                             3.54(9)
1                                  3.54(9)
2                                  3.66(10)
3                                  3.72(9)
4                                  3.76(10)
5                                  3.79(11)
6                                  3.82(11)
7                                  3.84(11)
8                                  3.89(11)
9                                  3.90(11)
10                                3.91(11)


It appears to me that if I specify a weighting value larger than the number of interval points, there is still a perceptible effect.
In this case, the resultant concentration of Na2O in wt% follows a power-law curve of the form:
f(x) = 3.5442 x0.0429 with R2 = 0.995.

Thanks,
Andrew

Yeah, you are correct.

It still adds points to the regression even when the value exceeds the number of actual TDI intervals, but it's a small effect, which is why I said *basically* no effect!    :D
Title: Re: Improving Time Dependent Intensity (TDI) Corrections
Post by: John Donovan on April 27, 2024, 08:18:56 AM
A user recently asked me how they could export TDI intensities from Probe for EPMA.  The issue being that the "User Specified Output Format" described here:

https://smf.probesoftware.com/index.php?topic=11.msg8327#msg8327

requires quantification of the sample, which means that one needs a primary standard for each element (they were applying the TDI correction to "flank" measurements and did not acquire any primary standard intensities).  This is because the TDI correction is generally not applied to the net intensities until the sample is quantified.  So if a primary standard is not available to obtain the TDI parameters, one must be utilize another output method.

Here are some other alternative output methods for TDI parameters and intensities:

1. One can view the TDI intensity data in Run | Display Time Dependent (TDI) and Alternating Intensities menu dialog. There is an export button that can be utilized for specific data points:

https://smf.probesoftware.com/index.php?topic=40.msg3970#msg3970

2. Another option is the Output | Save Time Dependent Intensities (TDI) menu, which outputs data for all samples and does not require quantification as seen here after exporting to Excel:

(https://smf.probesoftware.com/gallery/1_27_04_24_8_08_10.png)

3. The extrapolated TDI intensities are also available in the output to the log window in the line labeled "TDII:" as seen here:

ELEM:       Na      Si       K      Al      Mg      Ca      Ti      Mn      Fe       P      Cr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     LIN     LIN     MAN     EXP     LIN
TIME:    80.00   30.00   40.00   39.89   60.00   80.00   20.00   20.00   60.00   60.00   30.00     ---     ---
BEAM:    19.81   19.81   19.81   19.81   19.81   19.81   19.81   19.81   19.81   19.81   19.81     ---     ---

ELEM:       Na      Si       K      Al      Mg      Ca      Ti      Mn      Fe       P      Cr       O       H   SUM 
   342   1.419  25.341    .286   6.681   4.361   7.556   1.383    .146   7.345    .106    .030  44.476    .000  99.131
   343   1.408  25.413    .275   6.684   4.416   7.831   1.391    .163   7.241    .103    .039  44.681    .000  99.645
   344   1.434  25.235    .276   6.624   4.404   7.614   1.477    .137   7.321    .113    .032  44.423    .000  99.091
   345   1.404  25.362    .271   6.672   4.413   7.456   1.401    .119   7.385    .100    .035  44.489    .000  99.107
   346   1.446  25.267    .293   6.637   4.351   7.443   1.419    .141   7.266    .112    .036  44.323    .000  98.734
   347   1.428  25.327    .274   6.618   4.384   7.415   1.400    .136   7.226    .115    .030  44.349    .000  98.702

AVER:    1.423  25.324    .280   6.653   4.388   7.552   1.412    .140   7.297    .108    .034  44.457    .000  99.068
SDEV:     .016    .064    .008    .030    .028    .156    .034    .014    .063    .006    .004    .128    .000    .342
SERR:     .007    .026    .003    .012    .011    .064    .014    .006    .026    .002    .001    .052    .000
%RSD:     1.14     .25    3.02     .45     .63    2.06    2.43   10.28     .86    5.62   10.64     .29     .00
STDS:      336     162     374     336     162     162      22      25     162     285     396     ---     ---

STKF:    .0735   .2018   .1132   .1333   .0568   .1027   .5547   .7341   .0950   .1601   .3060     ---     ---
STCT:   2517.2  9998.0  5418.2  8306.2  2850.6   337.0  6456.1 14052.2   600.2  9597.6  5218.6     ---     ---

UNKF:    .0071   .1991   .0025   .0483   .0288   .0698   .0120   .0012   .0617   .0008   .0003     ---     ---
UNCT:    243.9  9862.2   121.1  3009.2  1445.9   229.1   139.7    22.4   389.6    46.1     5.0     ---     ---
UNBG:     11.0    11.1    30.1    28.2    19.0     1.4     7.1    17.9     7.6    36.1    13.2     ---     ---

ZCOR:   1.9968  1.2720  1.1050  1.3779  1.5231  1.0817  1.1763  1.2009  1.1830  1.4108  1.1559     ---     ---
KRAW:    .0969   .9864   .0224   .3623   .5072   .6798   .0216   .0016   .6490   .0048   .0010     ---     ---
PKBG:    23.27  889.29    5.05  107.85   77.23  163.72   21.15    2.25   52.52    2.28    1.38     ---     ---
INT%:     ----    ----    ----    ----    -.15    ----    ----    ----     .00    ----    ----     ---     ---

TDI%:    5.145    .038    .000    .222    .000    .434   -.063    .000    .000    .000    .000     ---     ---
DEV%:       .4      .1      .0      .1      .0      .4     1.0      .0      .0      .0      .0     ---     ---
TDIF:  LOG-LIN LOG-LIN    ---- LOG-LIN    ---- LOG-LIN LOG-LIN    ----    ----    ----    ----     ---     ---
TDIT:    99.17   49.67     .00   58.33     .00   98.50   37.67     .00     .00     .00     .00     ---     ---
TDII:     254.   9873.    ----   3037.    ----    230.    146.    ----    ----    ----    ----     ---     ---
TDIL:     5.54    9.20    ----    8.02    ----    5.44    4.99    ----    ----    ----    ----     ---     ---

But this requires a primary standard!

4. The intensity intercepts can also be seen from the Standard Assignments window when plotting the TDI intensities as seen here:

(https://smf.probesoftware.com/gallery/1_27_04_24_8_07_53.png)

Note that there is much discussion on these issues also in this topic:

https://smf.probesoftware.com/index.php?topic=11.msg9000#msg9000