Probe Software Users Forum

Software => CalcZAF and Standard => Topic started by: John Donovan on August 25, 2013, 11:56:12 AM

Title: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on August 25, 2013, 11:56:12 AM
A good introduction to the use of alpha and beta factors can be found here:

http://epmalab.uoregon.edu/bence.htm

Basically, the matrix elements are reduced to binaries for Monte-Carlo calculations (alpha factors) but later combined again for matrix corrections (beta factors) in real time.

This allows us to perform the Monte-carlo calculations in advance. Otherwise it would take the age of the universe.

Newly calculated binary intensity k-ratios derived from Penepma and fit to polynomial alpha factors for matrix corrections are listed here:

http://probesoftware.com/download/Calculated%20Alpha%20Binaries.txt

Note that one can check which Penepma derived alpha factors are being utilized by using the Run | List Current Alpha Factors menus in CalcZAF and Probe for EPMA.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on September 03, 2013, 10:53:20 AM
All,
I have some free CPU cycles to devote to some specific Penepma Monte-Carlo k-ratio calculations for alpha factor matrix corrections if there are some specific compositions that anyone would like to have correction factors for.

I am currently running Na through Te and also some boride binaries: BAlSiTiVCrFeCoNiZrNbMoTaW and also some alloy binaries: NiTaHfReWZrAlHfReWCoCrMoZr.

But if there are some other specific binaries you would like calculated please let me know.
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on September 26, 2013, 01:26:08 PM
Dan R.
I will release a new matrix.mdb file this weekend and it will contain these binaries out of the list of elements you gave me to calculate:

Penepma K-Ratio Alpha Factors:
Xray  Matrix   Alpha1  Alpha2  Alpha3
Cr ka in Re     .8563  -.0281   .0054    *From Penepma 2012 Calculations
Al ka in Re    1.0424   .2059  -.0454    *From Penepma 2012 Calculations
Cr ka in W     .8499  -.0274   .0044    *From Penepma 2012 Calculations
Al ka in W    1.0170   .2395  -.0923    *From Penepma 2012 Calculations
Cr ka in Ta     .8455  -.0274   .0037    *From Penepma 2012 Calculations
Al ka in Ta    1.0102   .2378  -.1299    *From Penepma 2012 Calculations
Cr ka in Hf     .8401  -.0270   .0030    *From Penepma 2012 Calculations
Al ka in Hf     .9952   .1649  -.0171    *From Penepma 2012 Calculations
Ni ka in Mo     .8594   .0582  -.0523    *From Penepma 2012 Calculations
Co ka in Mo     .9079   .1878  -.2327    *From Penepma 2012 Calculations
Cr ka in Mo     .9692   .0493  -.0314    *From Penepma 2012 Calculations
Al ka in Mo    1.2327   .1265  -.0482    *From Penepma 2012 Calculations
Cr ka in Zr     .9753  -.0919   .1539    *From Penepma 2012 Calculations
Al ka in Zr    1.1733  -.0328   .1521    *From Penepma 2012 Calculations
Mo la in Ni    1.3508  -.1958   .2462    *From Penepma 2012 Calculations
Co ka in Ni     .9576   .1915  -.1545    *From Penepma 2012 Calculations
Cr ka in Ni     .8962   .1128  -.0173    *From Penepma 2012 Calculations
Al ka in Ni    2.1889  -.0556  -.0531    *From Penepma 2012 Calculations
Mo la in Co    1.2272  -.0143   .0215    *From Penepma 2012 Calculations
Ni ka in Co     .9548   .0922  -.1215    *From Penepma 2012 Calculations
Cr ka in Co     .7883   .2836  -.1428    *From Penepma 2012 Calculations
Al ka in Co    1.9230   .0005  -.0369    *From Penepma 2012 Calculations
Mo la in Cr    1.1540  -.1365   .2223    *From Penepma 2012 Calculations
Zr la in Cr    1.1903   .1192  -.1659    *From Penepma 2012 Calculations
Ni ka in Cr    1.0569   .0065   .0061    *From Penepma 2012 Calculations
Co ka in Cr    1.1110   .0367  -.0460    *From Penepma 2012 Calculations
Al ka in Cr    1.6329  -.0741   .0844    *From Penepma 2012 Calculations
Re la in Al    1.4951  -.0453   .2212    *From Penepma 2012 Calculations
W la in Al    1.4685   .3313  -.3948    *From Penepma 2012 Calculations
Ta la in Al    1.4407   .1691  -.0636    *From Penepma 2012 Calculations
Hf la in Al    1.3648   .3420  -.3919    *From Penepma 2012 Calculations
Mo la in Al    1.4925  -.0440   .0442    *From Penepma 2012 Calculations
Zr la in Al    1.6290   .0734  -.1941    *From Penepma 2012 Calculations
Ni ka in Al    1.0526   .1093  -.1075    *From Penepma 2012 Calculations
Co ka in Al    1.0875   .1570  -.1566    *From Penepma 2012 Calculations
Cr ka in Al    1.0998   .0060   .0119    *From Penepma 2012 Calculations

The remaining binaries are continuing to calculate and I will let you know when they are ready. Note that x-ray lines listed above are just defaulted, but you can run any K, L or M (alpha or beta) line (that actually exists) for these elements at any beam energy between 5 and 50 keV.

The cool thing is that when you select the Penepma derived alpha factors from the ZAF Selections dialog, the low energy lines will be corrected using whatever phi-rho-z you are currently using (for the best absorption correction), and only  emission lines above 1 keV will get pulled in the from the matrix.mdb file for improved characteristic and continuum fluorescence corrections.
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on November 11, 2013, 02:58:13 PM
I've compiled the latest calculated Penepma binaries for matrix correction polynomial alpha factors and they are listed here as usual:

http://probesoftware.com/download/Calculated%20Alpha%20Binaries.txt

A screen shot of the 42 most recent binaries for alloy work (for Dan Ruscitto) is here:

(https://smf.probesoftware.com/oldpics/i43.tinypic.com/nmcjzs.jpg)

These are available in the latest 10.1.7 of our software.
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Anette von der Handt on January 07, 2014, 04:33:31 PM
Hi John,

thanks for doing this. Could you please run these for Pt-Fe binaries? I am specifically interested in the Pt M lines but also Pt La.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on January 10, 2014, 01:21:40 PM
Hi Anette,
This has been done and should be available next time you update PFE or CalcZAF. But just for fun I decided to look at the system too...

Here's Fe and Pt (La) for a 50:50 formula:

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Pt      la      Pt  1.3551e+02
      Pt      la      Fe  1.9904e+02
      Fe      ka      Pt  3.6733e+02
      Fe      ka      Fe  6.8270e+01

ELEMENT  ABSFAC  ZEDFAC  FINFAC STP-POW BKS-COR   F(x)e
   Pt la  1.0254  6.5808  6.7481   .1400   .9213   .9752
   Fe ka  1.0157  4.3900  4.4588   .2087   .9161   .9846

SAMPLE: 32767, ITERATIONS: 0, Z-BAR: 66.4272

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Pt la  1.0008  1.0000  1.1057  1.1066  1.1236   .9841   .9745 11.5630  1.2972 149.651
   Fe ka  1.0640   .9873   .7973   .8375   .7091  1.1244   .9254  7.1120  2.1091 300.771

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL
   Pt la  .00000  .70255  77.745   -----  50.000    .500   15.00
   Fe ka  .00000  .26573  22.255   -----  50.000    .500   15.00
   TOTAL:                100.000   ----- 100.000   1.000

As expected the only correction that stands out is the atomic number correction for Fe Ka resulting in a significant matrix correction of over 15%.

Here is Fe and Pt (Ma), again 50:50:

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Pt      ma      Pt  1.0992e+03
      Pt      ma      Fe  1.5038e+03
      Fe      ka      Pt  3.6733e+02
      Fe      ka      Fe  6.8270e+01

ELEMENT  ABSFAC  ZEDFAC  FINFAC STP-POW BKS-COR   F(x)e
   Pt ma  1.4350  5.4113  7.7651   .1162   .6290   .6969
   Fe ka  1.0157  4.3900  4.4588   .2087   .9161   .9846

SAMPLE: 32767, ITERATIONS: 0, Z-BAR: 66.4272

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Pt ma  1.0057  1.0000  1.0449  1.0509  1.1323   .9229   .6929  2.1220  7.0688 1189.27
   Fe ka  1.0640   .9873   .7973   .8375   .7091  1.1244   .9254  7.1120  2.1091 300.771

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL
   Pt ma  .00000  .73979  77.745   -----  50.000    .500   15.00
   Fe ka  .00000  .26573  22.255   -----  50.000    .500   15.00
   TOTAL:                100.000   ----- 100.000   1.000

Somewhat surprisingly the correction for Pt Ma is actually slightly smaller than for the Pt La in this system.

Now let's see what the correction for the Penepma alpha factors are by selecting these options in the Analytical | ZAF, Phi-rho-z, Alpha Factor,  Calibration Curve Selections:

(https://smf.probesoftware.com/oldpics/i39.tinypic.com/zjcu88.jpg)

Now we get the following output for the Fe and Pt (Ma) 50:50 formula:

Initializing alpha-factors...
Number of alpha-factor binaries to be calculated =  1
Calculating alpha-factor binary Pt ma in Fe

AFactorPenepmaReadMatrix: Pt ma in Fe at 40 degrees and 15 keV
   Conc      Kratios    Alpha   
    99.0000   98.545616    1.46109
    95.0000   93.005249    1.42895
    90.0000   86.158394    1.44588
    80.0000   73.629623    1.43260
    60.0000   51.153011    1.43238
    50.0000   41.185459    1.42804
    40.0000   31.916910    1.42209
    20.0000   14.974282    1.41953
    10.0000   7.275982     1.41598
    5.00000   3.595938     1.41101
    1.00000   .720174      1.39248

AFactorPenepmaReadMatrix: Fe ka in Pt at 40 degrees and 15 keV
   Conc      Kratios    Alpha   
    99.0000   99.206398    .791950
    95.0000   95.924782    .807186
    90.0000   91.829765    .800744
    80.0000   83.113754    .812681
    60.0000   65.103020    .804041
    50.0000   55.469604    .802789
    40.0000   45.418430    .801166
    20.0000   23.979267    .792567
    10.0000   12.290772    .792909
    5.00000   6.256991     .788533
    1.00000   1.255476     .794455

NON-LINEAR Alpha Factors, Takeoff= 40, KeV= 15
P=1, Pt#1, C=.9900, K=.9855, Alpha=1.4611
P=2, Pt#2, C=.9500, K=.9301, Alpha=1.4290
P=3, Pt#3, C=.9000, K=.8616, Alpha=1.4459
P=4, Pt#4, C=.8000, K=.7363, Alpha=1.4326
P=5, Pt#5, C=.6000, K=.5115, Alpha=1.4324
P=6, Pt#6, C=.5000, K=.4119, Alpha=1.4280
P=7, Pt#7, C=.4000, K=.3192, Alpha=1.4221
P=8, Pt#8, C=.2000, K=.1497, Alpha=1.4195
P=9, Pt#9, C=.1000, K=.0728, Alpha=1.4160
P=10, Pt#10, C=.0500, K=.0360, Alpha=1.4110
P=11, Pt#11, C=.0100, K=.0072, Alpha=1.3925
Xray  Matrix   Alpha1  Alpha2  Alpha3 %MaxDev
Pt ma in Fe    1.4041   .0530  -.0113    1.07
P=1, Pt#1, C=.9900, K=.9921, Alpha=.7919
P=2, Pt#2, C=.9500, K=.9592, Alpha=.8072
P=3, Pt#3, C=.9000, K=.9183, Alpha=.8007
P=4, Pt#4, C=.8000, K=.8311, Alpha=.8127
P=5, Pt#5, C=.6000, K=.6510, Alpha=.8040
P=6, Pt#6, C=.5000, K=.5547, Alpha=.8028
P=7, Pt#7, C=.4000, K=.4542, Alpha=.8012
P=8, Pt#8, C=.2000, K=.2398, Alpha=.7926
P=9, Pt#9, C=.1000, K=.1229, Alpha=.7929
P=10, Pt#10, C=.0500, K=.0626, Alpha=.7885
P=11, Pt#11, C=.0100, K=.0126, Alpha=.7945
Xray  Matrix   Alpha1  Alpha2  Alpha3 %MaxDev
Fe ka in Pt     .7885   .0495  -.0377    1.09

St    1 Sample 1
TakeOff = 40.0  KiloVolt = 15.0  Density =  5.000
Standard Z-bar:  66.4272

ELEM:       Pt      Fe
ELWT:   77.745  22.255
NRWT:   77.745  22.255
BETA:   1.0924   .8478


The "bottom line" (so to speak) are the beta factors which are equivalent to the matrix correction. Doing the same for the Fe and Pt (La) emission line we obtain the following table:

ELEM:   Pt Ma   Pt La    Fe Ka
ELWT:   77.745    77.745   22.255
Prz      1.0509   1.1066   .8375
BETA:   1.0924   1.1004   .8478


So about a 4% difference for Pt Ma.

Note you can also run this calculation from the Secondary fluorescence window in Standard by specifying both the beam incident and boundary phases to be the same as described here:

http://smf.probesoftware.com/index.php?topic=58.0

I don't have the exact weight percent composition already calculated as PAR files, but when we do this for the Fe Pt (Ma) 20:80 mass composition we get these output to Excel (see attachments).
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Anette von der Handt on January 27, 2014, 02:30:02 PM
That is very helpful. Thank you!
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on March 14, 2014, 01:20:51 PM
We now have already calculated Penepma 2012 k-ratios for 6573 binaries:

http://probesoftware.com/download/Calculated%20Alpha%20Binaries.txt

Further Monte-Carlo calculations are proceeding...

If there is a system that you are particularly interested in and would like to know what results you can obtain from these new matrix corrections and we haven't already calculated the k-ratios for those binaries, just let us know and we will run them for you and add them to the Matrix.mdb database.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Anette von der Handt on March 21, 2014, 11:52:54 AM
Hi John,

I have a new request. I am interested in carbon in the Fe-Ni-S system at 11kV. Would it be possible to run these as well? It is very much appreciated!
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on March 22, 2014, 04:51:58 PM
Quote from: Anette von der Handt on March 21, 2014, 11:52:54 AM
I have a new request. I am interested in carbon in the Fe-Ni-S system at 11kV. Would it be possible to run these as well? It is very much appreciated!

Yeah, I hear you. I'm still working on trying to get great light element analyses myself!

The problem for a Penepma/Penfluor Monte-Carlo approach is that these calculations for light elements are completely dominated by absorption (and chemical) effects. As our photoelastic cross section tables improve in accuracy, the absorption calculation will improve, but it will be a *long* time before we can model chemical effects from quantum principles!

Not to mention that to get good precision for these low energy lines, one must run for a long time because the interactions increase exponentially as the minimum photon/electron energy is reduced. For carbon at edge energy 283 eV (or so), this is slow going and then one is still left with dealing with the chemical effects.

Here's the approach I would take for carbon:

http://smf.probesoftware.com/index.php?topic=48.0

Why don't you describe a typical acquisition/analysis setup you are using now for carbon and show some results on standards (if you have a good Fe3C- cementite standard for example) and we can see if there anything else we can suggest...

In the meantime I will post some additional thoughts on carbon analyses in the topic linked above.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Anette von der Handt on March 28, 2014, 06:27:25 PM
Well, the problem is that the system (Fe-Ni-S) does not or only rarely produce stable binary (or ternary) carbides (anyone has a cohenite standard to share?) beyond FeXCY. The problem I have is not so much the background positions and interferences (and APF's and...) but the matrix corrections. I played around with CalcZAF and the absorption correction when S is around is incredibly high which precludes in my opinion the use of simple iron carbides for calibration curves. I wanted to explore this system a little further to see how "robust" the current matrix corrections are. I guess then the best approach would be to try to determine empirical MAC's for our system. Otherwise, any thoughts on the validity/quality of the current MAC's for carbon?
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on April 01, 2014, 12:42:57 PM
Quote from: Anette von der Handt on March 28, 2014, 06:27:25 PM
Well, the problem is that the system (Fe-Ni-S) does not or only rarely produce stable binary (or ternary) carbides (anyone has a cohenite standard to share?) beyond FeXCY. The problem I have is not so much the background positions and interferences (and APF's and...) but the matrix corrections. I played around with CalcZAF and the absorption correction when S is around is incredibly high which precludes in my opinion the use of simple iron carbides for calibration curves. I wanted to explore this system a little further to see how "robust" the current matrix corrections are. I guess then the best approach would be to try to determine empirical MAC's for our system. Otherwise, any thoughts on the validity/quality of the current MAC's for carbon?
Hi Anette,
Wow, I had not noticed this quite nasty system previously!

Here is the output from the CalcZAF | Xray | Display MAC Emitter-Absorber Pair menu for the entry "C ka S":

MAC value for C ka in S =   47396.64  (LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV)
MAC value for C ka in S =   47940.00  (CITZMU   Heinrich (1966) and Henke and Ebisu (1974))
MAC value for C ka in S =        .00  (MCMASTER McMaster (LLL, 1969) (modified by Rivers))
MAC value for C ka in S =   50414.55  (MAC30    Heinrich (Fit to Goldstein tables, 1987))
MAC value for C ka in S =        .00  (MACJTA   Armstrong (FRAME equations, 1992))
MAC value for C ka in S =   46621.07  (FFAST    Chantler (NIST v 2.1, 2005))
MAC value for C ka in S =   46621.07  (USERMAC  User Defined MAC Table)

Those are very large absorption corrections indeed.  Let's try a test material... you mentioned carbides so I assume you are interested in sulfur in carbides (though how would sulfur get in a carbide?). So let's make up something, say FeSC, where we assume the sulfur atom has replaced a carbon atom?

A calculation using Armstrong/Reed is shown here for starters:

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Fe ka  1.0053  1.0000  1.0781  1.0838  1.1077   .9733   .9794  7.1120  2.1091 94.5743
   S  ka  1.1339   .9975   .9528  1.0777   .9269  1.0279   .8211  2.4720  6.0680 719.626
   C  ka  9.2882   .9998   .8496  7.8889   .7765  1.0940   .0556   .2838 52.8467 23223.0

So the absorption correction for C ka in this particular composition is almost 1000% Yes, one thousand percent...

How does it fair with other absorption models?  Here is PAP (original full treatment):

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Fe ka  1.0055  1.0000  1.0938  1.0998  1.1231   .9739   .9783  7.1120  2.1091 94.5743
   S  ka  1.1336   .9975   .9510  1.0754   .9290  1.0238   .8186  2.4720  6.0680 719.626
   C  ka  9.0369   .9998   .8018  7.2439   .7215  1.1112   .0541   .2838 52.8467 23223.0

So, yes, it would appear that absorption is the culprit and that means that the mass absorption coefficients (MACs) are the thing to look at as Anette suggests. So let's see what we have in the way of Empirical MACs by going to the Xray | Empirical MACs menu in CalcZAF:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/2ymepva.jpg)

So, apparently no one has measured this MAC previously...

If anyone can provide a suitable Fe carbide-sulfide I would be pleased to do some empirical determinations of the mass absorption coefficients a la Pouchou...

Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on June 09, 2014, 10:48:56 PM
New Penepma Monte-Carlo binaries calculated for ultra fast matrix corrections:

06/09/2014  12:54 PM           368,435 41-73_40.txt
06/09/2014  12:54 PM           367,336 41-42_40.txt
06/09/2014  12:54 PM           365,812 41-74_40.txt
06/09/2014  12:54 PM           363,509 42-5_40.txt
06/09/2014  12:54 PM           361,811 42-11_40.txt
06/09/2014  12:53 PM           398,589 32-48_40.txt
06/09/2014  12:53 PM           398,323 32-49_40.txt
06/09/2014  12:53 PM           398,165 32-51_40.txt
06/09/2014  12:53 PM           397,931 32-47_40.txt
06/09/2014  12:53 PM           397,925 32-52_40.txt
06/09/2014  12:53 PM           397,280 32-50_40.txt
06/09/2014  12:53 PM           396,255 33-40_40.txt
06/09/2014  12:53 PM           396,057 33-36_40.txt
06/09/2014  12:53 PM           394,291 33-35_40.txt
06/09/2014  12:53 PM           393,589 33-37_40.txt
06/09/2014  12:53 PM           387,190 36-33_40.txt
06/09/2014  12:53 PM           387,166 35-33_40.txt
06/09/2014  12:53 PM           384,414 35-28_40.txt
06/09/2014  12:53 PM           382,325 37-33_40.txt
06/09/2014  12:53 PM           377,206 36-28_40.txt
06/09/2014  12:53 PM           372,527 40-90_40.txt
06/09/2014  12:53 PM           372,301 40-82_40.txt
06/09/2014  12:53 PM           370,440 41-16_40.txt
06/09/2014  12:53 PM           368,995 40-33_40.txt
06/09/2014  12:53 PM           367,922 41-15_40.txt
06/09/2014  12:53 PM           367,900 41-32_40.txt
06/09/2014  12:53 PM           364,261 42-16_40.txt
06/09/2014  12:53 PM           361,920 42-40_40.txt
06/09/2014  12:53 PM           361,640 42-23_40.txt
06/09/2014  12:53 PM           361,278 42-14_40.txt
06/09/2014  12:53 PM           361,168 42-13_40.txt
06/09/2014  12:53 PM           361,120 42-22_40.txt
06/09/2014  12:53 PM           361,058 42-15_40.txt
06/09/2014  12:53 PM           360,683 42-27_40.txt
06/09/2014  12:53 PM           360,427 42-25_40.txt
06/09/2014  12:53 PM           360,269 42-29_40.txt
06/09/2014  12:53 PM           356,695 42-24_40.txt
06/09/2014  12:53 PM           356,588 42-28_40.txt
06/09/2014  12:53 PM           354,732 42-26_40.txt
06/09/2014  12:53 PM           353,473 42-12_40.txt
06/09/2014  12:53 PM           271,174 16-47_40.txt
06/09/2014  12:53 PM           271,125 16-44_40.txt
06/09/2014  12:53 PM           271,089 16-45_40.txt
06/09/2014  12:53 PM           271,057 16-46_40.txt
06/09/2014  12:53 PM           271,040 16-42_40.txt
06/09/2014  12:53 PM           270,927 16-49_40.txt
06/09/2014  12:53 PM           270,920 16-43_40.txt
06/09/2014  12:53 PM           270,914 16-48_40.txt
06/09/2014  12:53 PM           270,767 16-51_40.txt
06/09/2014  12:53 PM           270,661 16-50_40.txt
06/09/2014  12:53 PM           270,173 16-41_40.txt
06/09/2014  12:53 PM           270,014 15-56_40.txt
06/09/2014  12:53 PM           260,828 22-90_40.txt
06/09/2014  12:53 PM           260,703 22-63_40.txt
06/09/2014  12:53 PM           258,656 22-92_40.txt
06/09/2014  12:53 PM           254,226 24-63_40.txt
06/09/2014  12:53 PM           252,136 24-56_40.txt
06/09/2014  12:53 PM           251,947 27-50_40.txt
06/09/2014  12:53 PM           251,800 27-45_40.txt
06/09/2014  12:53 PM           251,728 27-47_40.txt
06/09/2014  12:53 PM           251,391 27-90_40.txt
06/09/2014  12:53 PM           251,095 27-82_40.txt
06/09/2014  12:53 PM           250,224 27-46_40.txt
06/09/2014  12:53 PM           250,169 27-44_40.txt
06/09/2014  12:53 PM           249,952 27-49_40.txt
06/09/2014  12:53 PM           249,911 27-51_40.txt
06/09/2014  12:53 PM           249,907 27-52_40.txt
06/09/2014  12:53 PM           249,781 27-48_40.txt
06/09/2014  12:53 PM           249,082 28-90_40.txt
06/09/2014  12:53 PM           248,148 28-35_40.txt
06/09/2014  12:53 PM           247,901 28-36_40.txt
06/09/2014  12:53 PM           247,662 28-82_40.txt
06/09/2014  12:53 PM           193,911 13-90_40.txt
06/09/2014  12:53 PM           193,895 13-92_40.txt
06/09/2014  12:53 PM           193,870 13-63_40.txt
06/09/2014  12:53 PM           193,798 12-92_40.txt
06/04/2014  10:37 AM           370,493 41-40_40.txt
06/04/2014  10:37 AM           370,334 41-5_40.txt
06/04/2014  10:37 AM           368,352 41-23_40.txt
06/04/2014  10:37 AM           368,304 41-11_40.txt
06/04/2014  10:37 AM           368,165 41-26_40.txt
06/04/2014  10:37 AM           367,991 41-14_40.txt
06/04/2014  10:37 AM           367,981 41-13_40.txt
06/04/2014  10:37 AM           365,907 41-22_40.txt
06/04/2014  10:37 AM           365,783 41-24_40.txt
06/04/2014  10:37 AM           365,218 41-12_40.txt
06/04/2014  10:37 AM           365,157 41-28_40.txt
06/04/2014  10:37 AM           361,407 41-27_40.txt
06/02/2014  02:30 PM           374,394 39-32_40.txt
06/02/2014  02:30 PM           374,321 39-33_40.txt
06/02/2014  02:30 PM           373,263 40-16_40.txt
06/02/2014  02:30 PM           373,129 40-5_40.txt
06/02/2014  02:30 PM           372,688 40-42_40.txt
06/02/2014  02:30 PM           372,663 40-15_40.txt
06/02/2014  02:30 PM           370,987 40-72_40.txt
06/02/2014  02:30 PM           370,791 40-23_40.txt
06/02/2014  02:30 PM           370,680 40-24_40.txt
06/02/2014  02:30 PM           370,632 40-41_40.txt
06/02/2014  02:30 PM           370,557 40-22_40.txt
06/02/2014  02:30 PM           370,441 40-74_40.txt
06/02/2014  02:30 PM           370,319 40-73_40.txt
06/02/2014  02:30 PM           370,317 40-25_40.txt
06/02/2014  02:30 PM           370,113 40-75_40.txt
06/02/2014  02:30 PM           370,108 40-27_40.txt
06/02/2014  02:30 PM           370,105 40-12_40.txt
06/02/2014  02:30 PM           370,034 40-26_40.txt
06/02/2014  02:30 PM           369,983 39-27_40.txt
06/02/2014  02:30 PM           369,725 40-13_40.txt
06/02/2014  02:30 PM           369,686 40-28_40.txt
06/02/2014  02:30 PM           369,479 40-11_40.txt
06/02/2014  02:30 PM           369,418 40-8_40.txt
06/02/2014  02:30 PM           369,179 40-14_40.txt
06/02/2014  02:30 PM           365,469 39-38_40.txt
06/02/2014  02:30 PM           354,944 39-26_40.txt
06/02/2014  02:30 PM           371,049 40-32_40.txt
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on June 11, 2014, 12:09:12 PM
This is a very silly thing to plot, but since I haven't finished calculating all the binary pairs in the POUCHOU2.DAT kratio dataset, I thought it might be a fun thing to try in the meantime...

So here is the Pouchou dataset calculated using the default JTA (Armstrong)/Reed p/r/z :

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/kb3dp5.jpg)

As you can see, it does an excellent job with an average of 1.0085 and a variance of 0.0466 (4.6%).

Running the same calculation using the same JTA/Reed p/r/z physics, but with the k-ratios fit to three coefficient alpha factors, we see a slight degradation due to the fact that a 2nd order polynomial doesn't provide a perfect fit to these hyperbolic relationships:

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/sfe645.jpg)

But with an average of 1.009 and a variance of 0.0469 (4.6%), the results are very similar.

Now let's try the alpha factor regression again but this time replacing analytically calculated k-ratios with Penfluor/Fanal MC calculated k-ratios. Why are we doing this? Remember, if we can utilize pre-calculated MC k-ratios for alpha factors, we can essentially perform Monte-Carlo calculations for arbitrary compositions in a few seconds. Note that only a small fraction of the binaries are replaced and yet we see an improvement even over the full JTA/Reed p/r/z:

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/1zcic7q.jpg)

Where we can see an average of 1.0029 and a variance of 0.0448 (4.4%) utilizing what Penfluor/Fanal k-ratios were available. So a visible improvement using the MC derived k-ratios.

I will post further Pouchou error distributions as I obtain a more complete set of Penfluor/Fanal binaries.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on August 20, 2014, 12:39:24 PM
A bunch of new fast Monte-Carlo derived k-ratios for alpha factors has been added to the matrix.mdb database.

Running the Pouchou2.dat dataset again gives the following results (compare to the above histogram):

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/6rt1xw.jpg)

Again, a small improvement, but still an improvement...

Quick addition: I finally also ran the full Pouchou2.dat dataset using full PAR files calculated for the actual compositions (without the use of binary alpha factors) and here is what we obtain:

AverageA .993658
StdDevA .038908
MinimumA .719737
MaximumA 1.20810
AverageB .000000
StdDevB .000000
MinimumB .000000
MaximumB .000000


Problematic k-ratio errors (< 0.8 or > 1.2)
  Line             ConcA   ConcB      t0      e0   K-Exp   K-Cal   K-Err
3     al ka in fe .241000 .759000 52.5000 30.0000 .083000 .065567 .789963
618   al ka in ti .398000 .602000 40.0000 40.0000 .142900 .172638 1.20810
648   au la in cu .508000 .492000 40.0000 13.0000 .417400 .300418 .719737

The above three k-ratios produce the largest errors.

Taking the last k-ratio (Au La in Cu) and running it in CalcZAF as a standard we obtain the following (with the warnings for a low overvoltage situation):

Sample 1
Warning: Overvoltage of Au la, edge energy 11.918 KeV, is 1.090787
Warning: Overvoltage of Au la is only  1.090787
Warning: Overvoltage of Au la, edge energy 11.918 KeV, is 1.090787
Warning: Overvoltage of Au la is only  1.090787

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Au      la      Au  1.3232e+02
      Au      la      Cu  2.3420e+02
      Cu      ka      Au  2.1412e+02
      Cu      ka      Cu  5.0035e+01

ELEMENT  ABSFAC  ZEDFAC  FINFAC STP-POW BKS-COR   F(x)e
   Au la  1.0119  7.1804  7.2660   .1369   .9827   .9882
   Cu ka  1.0071  4.7798  4.8137   .1994   .9531   .9930

SAMPLE: 32767, ITERATIONS: 0, Z-BAR: 54.4

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Au la  1.0027  1.0000  1.2378  1.2412  1.2455   .9938   .9855 11.9180  1.0908 182.447
   Cu ka  1.0133   .9921   .8513   .8558   .8235  1.0337   .9799  8.9790  1.4478 133.391

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL
   Au la  .00000  .40929  50.800   -----  24.987    .250   13.00                               
   Cu ka  .00000  .57491  49.200   -----  75.013    .750   13.00
   TOTAL:                100.000   ----- 100.000   1.000


Note also the very large atomic number correction.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on August 20, 2014, 07:40:12 PM
Latest version of the matrix.mdb file contains a large number of new binaries.

197K k-ratios for 1562 binary pairs.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on August 26, 2014, 12:09:29 PM
Here is the error histogram plotted for the full Pouchou2.dat dataset using specific compositions calculated using Penfluor/Fanal (Penepma for primary intensities and Fanal for analytical fluorescence):

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/1omvzd.jpg)

Quite good really, but lets look closer at a few of the outliers by plotting k-ratio error as a function of concentration as seen here (the data labels are the line numbers in the first column in the Pouchou2.dat file):

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/eqcleb.jpg)

As one can see, many of these are at very high overvoltages where the absorption correction is very large, except for the Au La measurement at 13 keV which is a low overvoltage measurement.

For comparison with the analytical phi-rho-z calculations here is the same plot using the default phi-rho-z in CalcZAF:

(https://smf.probesoftware.com/oldpics/i58.tinypic.com/2q89et3.jpg)

The Pouchou2.dat file is included with your CalcZAF.msi installation, but I attach it below for convenience.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Philippe Pinard on September 08, 2014, 10:22:46 AM
For comparison, results using the full-blown PENEPMA.

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/aln293.jpg)

The points in red are those highlighted by Probeman in the PENFLUOR/FANAL graph. Note that the limits of the y-axis are different.

Edit by John: This is excellent!  Would it be possible to re-plot the data with the same axes as the others?  Which version of Penepma was utilized?  Do you see a difference between say Penepma 2008 and 2012?
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Philippe Pinard on September 09, 2014, 12:18:42 AM
Same scaling.

(https://smf.probesoftware.com/oldpics/i62.tinypic.com/2ch7rlc.jpg)

The results are from PENEPMA/PENELOPE 2011. The simulations were run until an relative uncertainty of 1% was obtained for the x-ray line of interest. The detector was centered as the specified take-off angle and had an opening of +- 9 deg.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on September 09, 2014, 09:00:44 AM
Hi Philippe,
I am surprised that there is so much difference between the Penfluor/Fanal and Penepema results given that the main difference between them is the treatment of fluorescence (Fanal does the fluorescence analytically).

I've got a back burner project to start calculating k-ratios for alpha factors from the full Penepma, but now it's going to get more attention...

Ok, here's another thing I realize after some thinking: if I compare the two graphs directly:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/23mr8ms.jpg)

and

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/9jj3ud.jpg)

it appears to me that the high concentrations errors are more similar and that the Penfluor errors increase as the concentrations are lower. Since the default in Penfluor is to only calculate 3600 sec for each voltage this could mean that the Penfluor k-ratios used to calculate the alpha-factors are of insufficient precision.

I am going to do some comparisons with the full blown Penepma and check this idea...

No, it wasn't a precision issue after all. Instead I found a silly mistake with the formatting of the takeoff angle in the Fanal input file!  Re-extracting the data using Fanal provides significantly improved error distributions and many of the remaining outliers seem to be highly fluorescent systems- see updated graphs above.

Edit by John: it could be the low overvoltage situations (Au La) may be precision related- I will check that as well.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on November 27, 2014, 12:10:42 PM
A new Matrix.mdb database has been released for CalcZAF and Probe for EPMA which includes some light element binaries (many more coming soon) and newly recalculated k-ratios with double precision pure element standards for improved calculations.

To see what binaries are currently available please see the following link:

http://probesoftware.com/download/Calculated%20Matrix%20Binaries.txt

I would be very pleased if you have any experimental data comparing these new fast Monte-Carlo alpha factors with traditional analytical calculations.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on December 22, 2014, 03:28:57 PM
OK, I've recalculated the Pouchou binaries using Penfluor/Fanal (without B Ka just as Philippe did above) and here is what I get now:

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/14uf50l.jpg)

As you can see the outliers are now all very low overvoltage situations. This is because I used the default 3600 seconds per beam energy to obtain the intensities and at very low overvoltages the precision is insufficient under these circumstances. But this is very promising compared to the analytical codes in CalcZAF.

The advantage of the Penfluor code is that once you have a composition, you can extract multiple elements, x-rays at different takeoff angles and beam energies in seconds.  Because these intensities will be used to calculate k-ratios for alpha factors for matrix corrections for arbitrary compositions within the binary one cannot specify the precision in advance, as one can with Philippe's Penepma runs shown above.

Next I will compare to a 7200 sec per beam energy calculation to see how that improves the precision for these low overvoltage situations. Meanwhile the Monte-Carlo modeling continues...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on April 10, 2015, 04:57:43 PM
The latest version of CalcZAF (and Probe for EPMA) now contain an updated matrix.mdb k-ratio database for over 2000 binaries at beam energies between 1 and 50 keV for a total of over 229,000 k-ratios.  That's about half the periodic table calculated at normal precision using the Penepma (Penfluor/Fanal) code.

Most of the new additions are for REEs and actinide elements.

For a list of the binaries already calculated see this link:

http://probesoftware.com/download/Calculated%20Matrix%20Binaries.txt

Oh, and there are a significant number of new light element binaries for carbon, nitrogen, etc.  Please remember that while these light element matrix corrections are well modeled, they do not include chemical bonding effects which affect peak shape and position.  For these chemical bonding effects, area peak factor (APF) corrections are still required as discussed here:

http://smf.probesoftware.com/index.php?topic=248.msg1186#msg1186
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on April 28, 2015, 12:11:32 PM
To compare the difference between the default precision Penfluor/Fanal calculation with higher precision calculations see the graphs below of the Ag, Cu, Au alloy measurements in the Pouchou2.dat (without the Cu La measurements).  That gives us 232 measurements to compare, and the nice thing about this system is that there are all sorts of physics here, high absorption and large fluorescences.

First here is the original CalcZAF (Armstrong/Reed) calculation without beta fluorescence for reference:

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/15pj0co.jpg)

This can be compared to the new CalcZAF fluorescence code with beta lines fluorescence seen here:

http://smf.probesoftware.com/index.php?topic=490.msg2710#msg2710

Now here are the same measurements, but calculated using Penfluor/Fanal derived k-ratio alpha factors using the default precision (3600 sec per beam energy). All k-ratios for 11 compositions in each binary all precalculated in advance:

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/97jzft.jpg)

The high side outlier is a low overvoltage situation.

Now here are the same data, but this time using "high precision" Penfluor k-ratios (7200 sec per beam energy):

(https://smf.probesoftware.com/oldpics/i58.tinypic.com/2uzf68k.jpg)

Similar, but note that the variance is improved considerably over the default precision calculations (much smaller).  And the low overvoltage outlier is no longer visible!

In fact these 7200 sec k-ratios fitted to alpha factors compares quite well to the full Penfluor/Fanal calculations on the specific Ag, Cu, Au conditions and compositions in the Pouchou2 database as seen here:

AverageA .995590
StdDevA .026136
MinimumA .881889
MaximumA 1.12403


The work continues...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on May 22, 2015, 03:08:23 PM
I'm looking to further test the Penepma derived k-ratio alpha factor matrix corrections for extreme fluorescence situations.

The Pouchou binary k-ratio database was apparently selected to avoid large fluorescence situations and mainly test the Z and A terms in the matrix corrections at that time.

But if anyone has a high quality set of measurements on stainless steel or high alloy steel standard materials and they would be willing to share it, I would be very interested in obtaining such a database for testing these Monte-Carlo characteristic (and continuum) fluorescence matrix corrections. The elements of interest would be Fe, Ni, Cr, Co, W, Nb, etc, etc...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on May 25, 2015, 10:04:12 AM
I have recently improved the handling of Penepma Monte-Carlo derived k-ratios for alpha factor matrix corrections to show whether the binary is question has already been calculated and loaded or not (if not, the calculation falls through to the current phi-rho-z method to analytically calculate the missing k-ratios).

This is can seen in the following output from CalcZAF. Normally, the binary has been loaded from the Penepma matrix.mdb database (or not,) in both emitter-matrix directions, for example as seen here:

NON-LINEAR Alpha Factors, Takeoff= 40, KeV= 20

P=1, C=.9900, K=.9883, Alpha=1.1735
P=2, C=.9500, K=.9416, Alpha=1.1793
P=3, C=.9000, K=.8753, Alpha=1.2822
P=4, C=.8000, K=.7586, Alpha=1.2729
P=5, C=.6000, K=.5420, Alpha=1.2675
P=6, C=.5000, K=.4421, Alpha=1.2620
P=7, C=.4000, K=.3467, Alpha=1.2563
P=8, C=.2000, K=.1668, Alpha=1.2485
P=9, C=.1000, K=.0818, Alpha=1.2475
P=10, C=.0500, K=.0405, Alpha=1.2461
P=11, C=.0100, K=.0080, Alpha=1.2505
Xray  Matrix   Alpha1  Alpha2  Alpha3  Alpha4 %AvgDev   *from Penepma 2012 Calculations
pr la in p    4.6916  3.1333  2.6693 -3.4302 1.49763

P=1, C=.0100, K=.0048, Alpha=2.1103
P=2, C=.0500, K=.0245, Alpha=2.0975
P=3, C=.9000, K=.8059, Alpha=2.1672
P=4, C=.8000, K=.6481, Alpha=2.1724
P=5, C=.6000, K=.4089, Alpha=2.1688
P=6, C=.5000, K=.3160, Alpha=2.1645
P=7, C=.4000, K=.2360, Alpha=2.1576
P=8, C=.2000, K=.1053, Alpha=2.1252
P=9, C=.1000, K=.0501, Alpha=2.1059
P=10, C=.0500, K=.0245, Alpha=2.0952
P=11, C=.0100, K=.0048, Alpha=2.0868
Xray  Matrix   Alpha1  Alpha2  Alpha3  Alpha4 %AvgDev   *from Penepma 2012 Calculations
p ka in pr    2.6245   .6932   .2787  -.5319 .295767


In this example one element binary (emitting element and matrix element) are found in the matrix.mdb database, but the other binary is not:

NON-LINEAR Alpha Factors, Takeoff= 40, KeV= 15

P=1, C=.9900, K=.9889, Alpha=1.1146
P=2, C=.9500, K=.9440, Alpha=1.1280
P=3, C=.9000, K=.8877, Alpha=1.1389
P=4, C=.8000, K=.7765, Alpha=1.1511
P=5, C=.6000, K=.5636, Alpha=1.1615
P=6, C=.5000, K=.4621, Alpha=1.1641
P=7, C=.4000, K=.3638, Alpha=1.1660
P=8, C=.2000, K=.1762, Alpha=1.1686
P=9, C=.1000, K=.0868, Alpha=1.1696
P=10, C=.0500, K=.0430, Alpha=1.1700
P=11, C=.0100, K=.0086, Alpha=1.1703
Xray  Matrix   Alpha1  Alpha2  Alpha3  Alpha4 %AvgDev
Rb la in c    1.8420   .6163   .4769  -.6695 .159128

P=1, C=.0100, K=.0009, Alpha=11.3800
P=2, C=.0500, K=.0046, Alpha=11.4613
P=3, C=.9000, K=.5033, Alpha=8.8820
P=4, C=.8000, K=.3013, Alpha=9.2778
P=5, C=.6000, K=.1342, Alpha=9.6748
P=6, C=.5000, K=.0932, Alpha=9.7260
P=7, C=.4000, K=.0646, Alpha=9.6565
P=8, C=.2000, K=.0259, Alpha=9.3892
P=9, C=.1000, K=.0120, Alpha=9.1567
P=10, C=.0500, K=.0058, Alpha=9.0326
P=11, C=.0100, K=.0011, Alpha=8.9032
Xray  Matrix   Alpha1  Alpha2  Alpha3  Alpha4 %AvgDev   *from Penepma 2012 Calculations
c ka in Rb   69.4274 51.9633 47.0268-59.1578 8.38180


Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on July 08, 2015, 03:11:32 PM
This is merely a sanity check comparing the fit error from using polynomial (3 coefficient) and non-linear (4 coefficient) alpha factors for the Pouchou Au, Cu, Ag dataset with the actual calculated k-ratios from Penepma (Penfluor/Fanal).

As you can see, both fit methods look excellent, the non-linear fit is slightly closer to 1.000 (no error) and has a slightly worse deviation, than the polynomial fit alpha factors.

The reason why the comparison is not exactly always equal to one, is due to limitations of precision in the Monte Carlo calculations, so there will be always be some small amount of variance in the fit (see image attachments below). But, here is where it gets interesting: because the fit is essentially regressing the "noise" it should provide a *more accurate* calculation than just using a single Monte Carlo calculation!

Interesting that the alpha factor magnitudes are similar but the slopes are different!
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 15, 2015, 01:05:59 PM
I been making progress on utilizing Penepma Monte-Carlo derived k-ratios for fast matrix corrections in CalcZAF (and Probe for EPMA and CalcImage), and can show some new results (with newly extracted k-ratios with self-consistent precision levels) starting with the Au, Cu, Ag binary systems in the Pouchou k-ratio database.

First Au, Cu and Ag binaries calculated at 3600 per keV (x10) times 11 binary compositions (from 1 to 99%) or 110 hours per binary system:

(https://smf.probesoftware.com/oldpics/i58.tinypic.com/27x1d07.jpg)

Note that while the preliminary Monte Carlo calculations take a long time, the actual matrix correction runs in seconds, quite comparable to the traditional analytical expressions we all use every day. Next here are the same Au, Cu and Ag binaries but calculated to a significantly higher precision at 14400 sec/keV (x10) times 11 binary compositions or 440 hours per binary system:

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/4j24vs.jpg)

Note that the higher precision calculation gives both a better error average (closer to 1.000) and has a smaller variance. This is mostly due to several very low overvoltage situations in the Pouchou database.  Note: as we attempt even lower overvoltage measurements on FEG instruments to reduce our interaction volumes these, very low overvoltage calculations become much more critical.

But the good news is that already we are already getting better accuracy with the above fast Monte-Carlo k-ratios compared to the traditional analytical expressions. For comparison check the same binary compositions calculated using the JTA/Reed phi-rho-z, first without beta line fluorescence:

(https://smf.probesoftware.com/oldpics/i58.tinypic.com/23lxx0h.jpg)

and now with the beta fluorescence:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/2dkjte1.jpg)

The average error calculation with beta fluorescence is slightly higher than without beta lines (as one would expect), but the variance is improved (smaller) by including beta lines. I will have more on this, as I am still adjusting the relative line weights in the Reed fluorescence correction for more exotic fluorescence situations...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 16, 2015, 03:55:54 PM
I've updated the matrix.mdb file for many new binaries. In fact most (though not all) of the binary systems in the Pouchou database have been calculated. For example, I have not yet extracted k-ratios for 75 degree takeoff angles yet!

But enough binaries have been calculated that it's worth comparing to traditional analytical physics expression accuracy. Both calculations below were done using the Pouchou database *without* B Ka and Cu La (there are bigger analytical issues with these emission lines!).

First here is the JTA phi-rho-z with beta fluorescence:

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/123rvhl.jpg)

A decent average error of 1.01 and a variance of around 4.5%.  Now let's try the Penepma derived fast Monte-Carlo k-ratios fitted using polynomial alpha factors.

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/1zdmzhx.jpg)

As you can see, an even better average error and the variance has decreased to around 3.4%!  I believe the era of fast Monte-Carlo has arrived...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Mike Jercinovic on July 17, 2015, 06:21:03 AM
Pretty impressive!
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 19, 2015, 09:22:14 AM
Quote from: Mike Jercinovic on July 17, 2015, 06:21:03 AM
Pretty impressive!

Thanks, Mike!

Here are some additional thoughts on this new "fast Monte-Carlo" method:

I should mention at the outset that matrix k-ratios utilized for this method, can be derived from *any* Monte-Carlo program. One only needs to calculate k-ratios for a range of composition for each binary (for each takeoff-angle, each beam energy and each emitting x-ray).  I have chosen to utilize these compositions for each emitting binary (that is what is in the matrix.mdb file):

1 : 99, 5 : 95, 10 : 90, 20 : 80, 40 : 60, 50 : 50, 60 : 40, 80 : 20, 90 : 10, 95 : 5, 99 : 1

For the k-ratio extractions I've mostly performed 40 degree takeoff angle calculations (and some 52.5 and 75 degree geometries for comparison to the empirical Pouchou k-ratio database) and beam energies from 1 to 50 keV in 1 keV steps. Note Penfluor only calculates down to 5 keV by default so I should probably not scan in k-ratios for beam energies below 5 keV into the matrix.mdb database (note to self). Though of course we can utilize k-ratios calculated for any instrument/beam condition of interest.

This means that *any* MC program can be utilized for these k-ratio calculations though currently I use Penepma (Penfluor) and Fanal for my k-ratios because it is MC based for the primary and continuum intensities, though the fluorescence calculation is analytical. One aspect to these MC calculations is that because one does not know the actual composition in advance (after all this is for matrix correction of arbitrary measured unknowns), the k-ratio calculation must be run to an arbitrary precision. This is mostly an issue for very weak emission lines and/or low over voltage situations.

Currently I am Running Penepma (Penfluor) for 3600 sec for each of the 10 beam energies for each binary composition. That is then 10 hours times 11 compositions or 110 hours per binary. The nice thing about using Penfluor is that once one has the Penfluor .PAR file for a specific composition, one can then "extract" k-ratios for *any* takeoff angle, for *any* beam energy (up to 50 keV), for any emitting line. In addition, because 11 compositions are being regressed to the alpha vs. concentration fit for each binary, statistical noise is actually reduced compared to single composition calculations as seen here:

http://smf.probesoftware.com/index.php?topic=47.msg3019#msg3019

In any event, because the MC k-ratio calculations occur off-line on one's MC servers, the speed of the MC program performing the k-ratio calculations isn't as important as the *accuracy*.  That is because once the k-ratios are pre-calculated to some arbitrary precision, they can be utilized in the matrix iteration by use of the alpha and beta expressions described here:

http://epmalab.uoregon.edu/bence.htm

for arbitrary compositions!

The situation today reminds me of the early days of microanalysis when everyone was trying to implement analytical expressions for electron-solid physics on computers that were simply too slow to handle a full blown treatment of all the parameters. That is why approximations were introduced into these early analytical expressions (with the possible exception of COR from NIST). More recently some investigators have modified these traditional codes to make them more rigorous (John Armstrong comes to mind).

However, now that computers today are so much faster, we can perform even more rigorous treatments of the physics in analytical expressions and some investigators  (Hendrix Demers and Nicholas Ritchie are two that come to mind) have done just that.

But... computers today are *still too slow* for on-line Monte Carlo calculation of matrix corrections. And that is why I am proposing that we perform these time consuming binary k-ratio calculations for the periodic table off-line (to arbitrary precision) and save the k-ratios for a range of composition for each binary and then utilize these k-ratios on-line in alpha expressions for high accuracy MC matrix corrections of arbitrary compositions.

In other words, there is no more need to "optimize" MC calculations for speed since we now have a way to utilize them for *fast* on-line matrix corrections.  Instead we should be solely concentrating on creating the most *accurate* MC programs for electron-solid physics...

Let's not compromise the physics for speed as was done 20 years ago because of computer technology limitations.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 20, 2015, 05:24:25 PM
And it just keeps getting better and better...

This is a error distribution from the Pouchou database (without B ka and Cu la) now with the 52.5 degree k-ratios included.

(https://smf.probesoftware.com/oldpics/i62.tinypic.com/2nuirna.jpg)

As you can see it is even better than before (smaller variance).  I should also point out that a significant portion of the above variance is due to two low over voltage binaries as seen here:

Problematic k-ratio errors (< 0.8 or > 1.2)
  Line             ConcA   ConcB     TOA      eO      Uo   K-Exp   K-Cal   K-Err
715   Cu ka in Ni .565000 .435000 40.0000 10.1000 1.12485 .558000 .719701 1.28979
722   Cu kb in Ni .565000 .435000 40.0000 10.2000 1.13598 .549400 .719902 1.31034

But this can be improved from increasing the modeling time from 3600 to 7200 sec per keV.  See the last error plot in this post calculated at 7200 sec:

http://smf.probesoftware.com/index.php?topic=47.msg2680#msg2680

By the way, the entire Pouchou database was calculated in about the same time as using Phi-rho-z, so yes, it is fast.

This version of the matrix.mdb database will be distributed in v. 10.9.6 of CalcZAF (and Probe for EPMA).
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: hdemers on July 21, 2015, 11:57:32 AM
Hi John,

Very interesting results.

However, I don't completely agree with your statement "there is no more need to "optimize" MC calculations for speed". I think we need both: accurate MC and sometime we need very fast MC. Outside the microanalysis world, we use MC to simulate imaging conditions and detector and still the MC are too slow (especially for SE micrograph). Event for x-ray microanalysis, most our sample now have feature size less than 50-10 nm and we need to be able to simulate different geometry "quickly".

But I agree we need the most accurate MC programs for electron-solid physics as we need to able to validate with a good reference other MC programs or analytical models.

Regards,
Hendrix
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 21, 2015, 12:31:54 PM
Quote from: hdemers on July 21, 2015, 11:57:32 AM
However, I don't completely agree with your statement "there is no more need to "optimize" MC calculations for speed". I think we need both: accurate MC and sometime we need very fast MC. Outside the microanalysis world, we use MC to simulate imaging conditions and detector and still the MC are too slow (especially for SE micrograph). Event for x-ray microanalysis, most our sample now have feature size less than 50-10 nm and we need to be able to simulate different geometry "quickly".

Hi Hendrix,
Ok, I'll rephrase the statement to this: "there is no more need to optimize MC calculations for speed in order to perform quantitative matrix corrections on arbitrary compositions". Does that work for you?

I agree with you that we also need to perform full arbitrary geometry calculations and that will require a fast MC (and/or much faster computers). 

My point was mainly that I don't want us to sacrifice MC accuracy for speed as was done 20 and 30 years ago with the analytical expression modeling approximations.

On a related note, Xavier once said to me: why don't you implement a fully rigorous fundamental parameters matrix correction in your software. And I replied: give me the equations and I'll do it!  I even have a place holder for it in the software already:

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/ws0krs.jpg)

As soon as you guys send me the code I'll implement it with full attribution!
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: hdemers on July 22, 2015, 03:23:15 PM
Hi John

Quote from: Probeman on July 21, 2015, 12:31:54 PM
Ok, I'll rephrase the statement to this: "there is no more need to optimize MC calculations for speed in order to perform quantitative matrix corrections on arbitrary compositions". Does that work for you?
OK for me

Quote from: Probeman on July 21, 2015, 12:31:54 PM
On a related note, Xavier once said to me: why don't you implement a fully rigorous fundamental parameters matrix correction in your software. And I replied: give me the equations and I'll do it!  I even have a place holder for it in the software already:
As soon as you guys send me the code I'll implement it with full attribution!
Interesting idea, you just need to solve the electron transport equation in the sample and calculate the x-ray generation from the electron distribution (energy and position) to get the phirhoz curve. The work of Rex and Dapor should be a good starting point.

Regards,
Hendrix
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 23, 2015, 12:19:38 PM
Quote from: hdemers on July 22, 2015, 03:23:15 PM
Quote from: Probeman on July 21, 2015, 12:31:54 PM
On a related note, Xavier once said to me: why don't you implement a fully rigorous fundamental parameters matrix correction in your software. And I replied: give me the equations and I'll do it!  I even have a place holder for it in the software already:
As soon as you guys send me the code I'll implement it with full attribution!
Interesting idea, you just need to solve the electron transport equation in the sample and calculate the x-ray generation from the electron distribution (energy and position) to get the phirhoz curve. The work of Rex and Dapor should be a good starting point.

That sounds simple... not!    :-\

In any event here is the Pouchou database re-calculated with some 75 degree k-ratios extracted and added to the matrix.mdb file:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/2ir12qx.jpg)

Basically the same results, just very slightly worse in the 4th or 5th decimal place. Again the main problem here are the low over voltage Cu Kb in Ni measurements as noted in the image above. I will be adding higher precision MC calculations to the matrix.mdb file shortly which will take care of this for many elements.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on August 18, 2015, 08:53:06 AM
I am pleased to report that after re-calculating the Ni-Cu binary at 7200 sec per beam energy (20 hours per binary for 11 binary compositions or 220 hours), the Pouchou database calculated errors from using the Penfluor/Fanal derived k-ratio for alpha factor fits looks even better (error variance down to 2.9 % compared to 3.2 % from the previous post above), as seen here:

(https://smf.probesoftware.com/oldpics/i57.tinypic.com/bg7ktt.jpg)

This new matrix k-ratio database will be folded into the main CalcZAF/PFE release this weekend.

Edit by John: well it came together faster than I thought.  The current release of CalcZAF or Probe for EPMA now has the matrix.mdb file used to produce the Pouchou database error distribution in the above post.

In case anyone is wondering (because I have an assortment of different kratios with different precisions), I always contruct the release matrix.mdb in the following fashion:

1. Copy the default precision files, then the high precision files, then the very high precision files (which are only CuAuAg binaries at the moment), so the higher precision calculations overwrite the lower precision calculations.

2. I then do the same for the files where the minimum energy was limited to 1 keV.  These files are best for calculating matrix corrections for emitters absorbed by low Z elements where a low minimum energy calculation would provide insufficient precision for high energy emission line matrix corrections.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on August 24, 2015, 07:30:49 AM
The latest matrix.mdb penepma k-ratio database is available here:

http://probesoftware.com/download/Matrix.mdb

Over 266K binary k-ratios.
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on September 16, 2015, 10:01:59 PM
I'm uploading the latest matrix.mdb now (which comes with the last version of PFE v. 11.05, though you'll need to re-run the latest CalcZAF.msi installer to get it).

This version contains a number of new binaries, particularly for actinide elements, e.g., oxygen in U, Np and Pu.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Philipp Poeml on September 17, 2015, 04:16:19 AM
Sounds cool. Let me know what I can do to provide some experimental data.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on September 17, 2015, 09:50:22 AM
Quote from: Philipp Poeml on September 17, 2015, 04:16:19 AM
Sounds cool. Let me know what I can do to provide some experimental data.

Can you post some beam conditions (keV) and k-ratios here?

And of course also post what the actual concentrations are... based on, what?
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on October 06, 2015, 12:07:37 PM
The latest "fast" Monte-Carlo matrix.mdb file now contains many of the actinide binaries as seen here:

07/15/2015  11:59 AM           116,568 84-85_40.txt
07/15/2015  11:59 AM           116,671 84-86_40.txt
07/15/2015  11:59 AM           116,513 84-87_40.txt
07/15/2015  11:59 AM           116,530 84-88_40.txt
07/15/2015  11:59 AM           116,705 84-89_40.txt
07/15/2015  11:59 AM           116,711 84-90_40.txt
07/15/2015  11:59 AM           116,695 84-91_40.txt
07/15/2015  11:59 AM           116,729 84-92_40.txt
07/15/2015  11:59 AM           116,621 84-93_40.txt
07/15/2015  11:59 AM           115,825 84-94_40.txt
07/15/2015  11:59 AM           116,469 84-95_40.txt
07/15/2015  11:59 AM           116,641 84-96_40.txt
07/15/2015  11:59 AM           115,623 85-84_40.txt
07/15/2015  11:59 AM           115,768 85-86_40.txt
07/15/2015  11:59 AM           115,714 85-87_40.txt
07/15/2015  11:59 AM           115,678 85-88_40.txt
07/15/2015  11:59 AM           115,771 85-89_40.txt
07/15/2015  11:59 AM           115,676 85-90_40.txt
07/15/2015  11:59 AM           114,801 85-91_40.txt
07/15/2015  11:59 AM           115,782 85-92_40.txt
07/15/2015  11:59 AM           115,749 85-93_40.txt
07/15/2015  11:59 AM           115,679 85-94_40.txt
07/15/2015  11:59 AM           115,736 85-95_40.txt
07/15/2015  11:59 AM           115,641 85-96_40.txt
07/15/2015  11:59 AM           113,720 86-84_40.txt
07/15/2015  11:59 AM           112,952 86-85_40.txt
07/15/2015  11:59 AM           113,948 86-87_40.txt
07/15/2015  11:59 AM           113,647 86-88_40.txt
07/15/2015  11:59 AM           112,117 86-89_40.txt
07/15/2015  11:59 AM           112,824 86-90_40.txt
07/15/2015  11:59 AM           113,642 86-91_40.txt
07/15/2015  11:59 AM           113,739 86-92_40.txt
07/15/2015  11:59 AM           113,009 86-93_40.txt
07/15/2015  11:59 AM           113,805 86-94_40.txt
07/15/2015  11:59 AM           113,698 86-95_40.txt
07/15/2015  11:59 AM           113,812 86-96_40.txt
07/15/2015  11:59 AM           113,928 87-84_40.txt
07/15/2015  11:59 AM           113,888 87-85_40.txt
07/15/2015  11:59 AM           113,691 87-86_40.txt
07/15/2015  11:59 AM           113,704 87-88_40.txt
08/24/2015  01:17 PM           112,927 87-89_40.txt
08/24/2015  01:17 PM           112,767 87-90_40.txt
08/24/2015  01:17 PM           113,788 87-91_40.txt
08/24/2015  01:17 PM           111,935 87-92_40.txt
08/24/2015  01:17 PM           112,931 87-93_40.txt
08/24/2015  01:17 PM           113,758 87-94_40.txt
08/24/2015  01:17 PM           113,719 87-95_40.txt
08/24/2015  01:17 PM           112,841 87-96_40.txt
07/15/2015  11:59 AM           112,890 88-84_40.txt
07/15/2015  11:59 AM           112,775 88-85_40.txt
07/15/2015  11:59 AM           112,820 88-86_40.txt
07/15/2015  11:59 AM           112,780 88-87_40.txt
08/24/2015  01:17 PM           112,909 88-89_40.txt
08/24/2015  01:17 PM           112,827 88-90_40.txt
08/24/2015  01:17 PM           112,839 88-91_40.txt
08/24/2015  01:17 PM           112,717 88-92_40.txt
08/24/2015  01:17 PM           112,845 88-93_40.txt
09/15/2015  12:56 PM           112,854 88-94_40.txt
09/15/2015  12:56 PM           112,845 88-95_40.txt
09/15/2015  12:56 PM           112,791 88-96_40.txt
07/15/2015  11:59 AM           111,934 89-84_40.txt
07/15/2015  11:59 AM           111,836 89-85_40.txt
07/15/2015  11:59 AM           109,999 89-86_40.txt
08/24/2015  01:17 PM           111,681 89-87_40.txt
08/24/2015  01:17 PM           111,755 89-88_40.txt
09/15/2015  12:56 PM           108,283 89-90_40.txt
10/05/2015  11:26 AM           111,856 89-91_40.txt
10/05/2015  11:26 AM           110,098 89-92_40.txt
10/05/2015  11:26 AM           110,958 89-93_40.txt
08/12/2015  04:55 PM           203,776 90-12_40.txt
08/12/2015  04:55 PM           203,530 90-13_40.txt
08/12/2015  04:55 PM           203,628 90-14_40.txt
08/12/2015  04:55 PM           203,827 90-15_40.txt
08/12/2015  04:55 PM           203,503 90-16_40.txt
08/12/2015  04:55 PM           203,689 90-19_40.txt
08/12/2015  04:55 PM           203,343 90-20_40.txt
08/12/2015  04:55 PM           203,410 90-22_40.txt
08/12/2015  04:55 PM           203,487 90-24_40.txt
08/12/2015  04:55 PM           203,582 90-25_40.txt
08/12/2015  04:55 PM           203,539 90-26_40.txt
08/12/2015  04:55 PM           203,723 90-27_40.txt
08/12/2015  04:55 PM           203,410 90-28_40.txt
08/12/2015  04:55 PM           203,660 90-32_40.txt
08/12/2015  04:55 PM           203,950 90-33_40.txt
08/12/2015  04:55 PM           203,916 90-39_40.txt
07/15/2015  11:59 AM           203,597 90-40_40.txt
07/15/2015  11:59 AM           203,850 90-56_40.txt
10/05/2015  11:26 AM           156,994 90-57_40.txt
07/15/2015  11:59 AM           203,740 90-63_40.txt
07/15/2015  11:59 AM           203,635 90-72_40.txt
07/15/2015  11:59 AM           203,584 90-82_40.txt
07/15/2015  11:59 AM           203,407 90-84_40.txt
07/15/2015  11:59 AM           203,391 90-85_40.txt
07/15/2015  11:59 AM           203,563 90-86_40.txt
08/24/2015  01:17 PM           203,800 90-87_40.txt
08/24/2015  01:17 PM           203,617 90-88_40.txt
09/15/2015  12:56 PM           203,573 90-89_40.txt
07/15/2015  11:59 AM           203,376 90-92_40.txt
07/15/2015  11:59 AM           201,764 91-84_40.txt
07/15/2015  11:59 AM           201,908 91-85_40.txt
07/15/2015  11:59 AM           201,689 91-86_40.txt
08/24/2015  01:17 PM           201,622 91-87_40.txt
08/24/2015  01:17 PM           199,378 91-88_40.txt
10/05/2015  11:26 AM           155,262 91-89_40.txt
08/12/2015  04:54 PM           199,626 92-12_40.txt
08/12/2015  04:54 PM           199,753 92-13_40.txt
07/20/2015  10:54 AM           199,719 92-13_52.5.txt
08/12/2015  04:54 PM           199,556 92-14_40.txt
07/20/2015  10:54 AM           199,554 92-14_52.5.txt
08/12/2015  04:54 PM           197,472 92-15_40.txt
07/20/2015  10:54 AM           197,570 92-15_52.5.txt
08/12/2015  04:54 PM           199,683 92-16_40.txt
07/20/2015  10:54 AM           199,639 92-16_52.5.txt
08/12/2015  04:54 PM           199,683 92-19_40.txt
08/12/2015  04:54 PM           199,688 92-20_40.txt
08/12/2015  04:54 PM           199,579 92-22_40.txt
08/12/2015  04:54 PM           199,559 92-24_40.txt
08/12/2015  04:54 PM           199,576 92-26_40.txt
07/20/2015  10:54 AM           199,604 92-26_52.5.txt
08/12/2015  04:54 PM           199,875 92-28_40.txt
08/12/2015  04:54 PM           199,402 92-32_40.txt
08/12/2015  04:54 PM           193,668 92-33_40.txt
09/15/2015  12:56 PM           199,810 92-37_40.txt
08/12/2015  04:54 PM           199,840 92-39_40.txt
07/15/2015  11:59 AM           199,744 92-40_40.txt
09/15/2015  12:56 PM           199,519 92-45_40.txt
07/15/2015  11:59 AM           199,650 92-56_40.txt
10/05/2015  11:26 AM           154,054 92-57_40.txt
07/15/2015  11:59 AM           199,723 92-63_40.txt
08/12/2015  04:54 PM           199,777 92-6_40.txt
10/05/2015  11:26 AM           154,262 92-75_40.txt
08/12/2015  04:54 PM           199,684 92-7_40.txt
10/05/2015  11:26 AM           154,231 92-82_40.txt
07/15/2015  11:59 AM           199,816 92-84_40.txt
07/15/2015  11:59 AM           199,721 92-85_40.txt
07/15/2015  11:59 AM           197,839 92-86_40.txt
08/24/2015  01:17 PM           197,753 92-87_40.txt
08/24/2015  01:17 PM           199,718 92-88_40.txt
10/05/2015  11:26 AM           152,573 92-89_40.txt
09/15/2015  12:56 PM           199,826 92-8_40.txt
07/15/2015  11:59 AM           197,889 92-90_40.txt
08/12/2015  04:54 PM           197,478 93-20_40.txt
07/15/2015  11:59 AM           197,484 93-84_40.txt
07/15/2015  11:59 AM           195,681 93-85_40.txt
07/15/2015  11:59 AM           195,719 93-86_40.txt
08/24/2015  01:17 PM           197,671 93-87_40.txt
08/24/2015  01:17 PM           197,665 93-88_40.txt
10/05/2015  11:26 AM           150,874 93-89_40.txt
09/15/2015  12:56 PM           197,601 93-8_40.txt
08/24/2015  01:17 PM           196,520 94-31_40.txt
07/15/2015  11:59 AM           194,830 94-84_40.txt
07/15/2015  11:59 AM           196,499 94-85_40.txt
07/15/2015  11:59 AM           196,736 94-86_40.txt
08/24/2015  01:17 PM           196,496 94-87_40.txt
09/15/2015  12:56 PM           196,539 94-88_40.txt
09/15/2015  12:56 PM           151,231 94-8_40.txt
07/15/2015  11:59 AM           194,810 95-84_40.txt
07/15/2015  11:59 AM           194,768 95-85_40.txt
07/15/2015  11:59 AM           194,750 95-86_40.txt
08/24/2015  01:17 PM           192,385 95-87_40.txt
09/15/2015  12:56 PM           194,453 95-88_40.txt
07/15/2015  11:59 AM           193,957 96-84_40.txt
07/15/2015  11:59 AM           193,598 96-85_40.txt
07/15/2015  11:59 AM           193,667 96-86_40.txt
08/24/2015  01:17 PM           189,492 96-87_40.txt
09/15/2015  12:56 PM           193,646 96-88_40.txt
             166 File(s)     26,862,286 bytes
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on October 25, 2015, 10:18:16 AM
I've recently updated the matrix.mdb file for fast Monte-Carlo matrix corrections.  The new binaries include additional light elements, actinides and rare-earth binaries, particularly Ce, La, P, U, Th and Pb.

See the link here for a list:

http://probesoftware.com/download/Calculated%20Matrix%20Binaries.txt

Again here is a comparison of a monazite composition with traditional phi-rho-z:

Un   11 Montel Madagascar 4-1, Results in Elemental Weight Percents

ELEM:       Ca      Si      Al       Y      Pr      Nd      Sm      Gd      Ce      La       P       U      Pb      Th      Dy      Er       O
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC
BGDS:      LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN
TIME:    40.00   40.00   40.00   40.00   40.00   40.00   40.00   40.00   20.00   20.00   20.00  240.00  240.00  240.00   80.00   80.00     ---
BEAM:   149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50     ---

ELEM:       Ca      Si      Al       Y      Pr      Nd      Sm      Gd      Ce      La       P       U      Pb      Th      Dy      Er       O   SUM 
   183    .550   1.078    .010    .071   2.525   8.165    .811    .381  24.575  12.188  11.662    .097    .252  11.320    .039    .004  26.428 100.157
   184    .550   1.105    .010    .068   2.535   8.119    .806    .374  24.392  12.079  11.445    .108    .238  11.385    .050    .008  26.131  99.404
   185    .537   1.131    .010    .091   2.440   8.067    .820    .386  24.441  11.911  11.544    .114    .249  11.713    .052    .003  26.294  99.802

AVER:     .546   1.105    .010    .077   2.500   8.117    .812    .381  24.470  12.059  11.550    .106    .246  11.473    .047    .005  26.284  99.788
SDEV:     .007    .027    .000    .012    .052    .049    .007    .006    .095    .140    .109    .008    .008    .210    .007    .003    .149    .377
SERR:     .004    .015    .000    .007    .030    .028    .004    .003    .055    .081    .063    .005    .004    .122    .004    .002    .086
%RSD:     1.33    2.42    1.17   15.97    2.10     .60     .83    1.55     .39    1.16     .94    7.98    3.06    1.83   15.54   52.36     .57
STDS:      305     305     305    1016    1010    1009    1011    1005    1001    1007    1001      15      17      16    1002    1003     ---

STKF:    .0862   .1608   .1137   .4593   .5438   .5479   .5534   .5556   .5348   .5384   .0783   .8994   .7907   .7095   .5626   .5656     ---
STCT:   122.89  443.60  303.18   42.38   58.63   69.20   90.67  109.30   47.53   40.77   30.38  214.22  199.42  136.30  125.91  139.67     ---

UNKF:    .0051   .0057   .0000   .0005   .0226   .0732   .0072   .0032   .2188   .1072   .0701   .0010   .0019   .1026   .0004   .0000     ---
UNCT:     7.29   15.61     .10     .04    2.44    9.24    1.17     .62   19.45    8.12   27.19     .23     .47   19.71     .08     .01     ---
UNBG:     2.10    2.91    1.68     .23     .54     .69     .87     .96     .49     .39     .27    1.36     .68    1.06    1.20    1.47     ---

ZCOR:   1.0668  1.9521  2.5987  1.5967  1.1047  1.1093  1.1340  1.2080  1.1182  1.1251  1.6481  1.0858  1.3164  1.1182  1.2381  1.2413     ---
KRAW:    .0593   .0352   .0003   .0010   .0416   .1336   .0129   .0057   .4092   .1991   .8950   .0011   .0024   .1446   .0007   .0001     ---
PKBG:     4.47    6.36    1.06    1.19    5.52   14.34    2.35    1.65   40.45   22.03  101.47    1.17    1.70   19.66    1.07    1.01     ---
INT%:      .00   -4.29    -.03    ----  -24.42    -.90  -18.24  -83.12    ----    -.16    ----  -55.80    -.53    ----  -52.11  -44.11     ---


and the same composition with the latest matrix.mdb fast Monte-Carlo binaries:

Un   11 Montel Madagascar 4-1, Results in Elemental Weight Percents

ELEM:       Ca      Si      Al       Y      Pr      Nd      Sm      Gd      Ce      La       P       U      Pb      Th      Dy      Er       O
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC
BGDS:      LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN     LIN
TIME:    40.00   40.00   40.00   40.00   40.00   40.00   40.00   40.00   20.00   20.00   20.00  240.00  240.00  240.00   80.00   80.00     ---
BEAM:   149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50  149.50     ---

ELEM:       Ca      Si      Al       Y      Pr      Nd      Sm      Gd      Ce      La       P       U      Pb      Th      Dy      Er       O   SUM 
   183    .547    .996    .009    .068   2.540   8.176    .814    .399  24.405  12.055  11.415    .105    .264  11.526    .038    .004  25.997  99.357
   184    .546   1.021    .009    .065   2.550   8.130    .809    .392  24.221  11.946  11.200    .117    .249  11.590    .049    .008  25.700  98.601
   185    .534   1.045    .009    .087   2.455   8.079    .822    .404  24.265  11.776  11.295    .123    .260  11.924    .051    .003  25.856  98.987

AVER:     .542   1.020    .009    .073   2.515   8.128    .815    .398  24.297  11.926  11.303    .115    .258  11.680    .046    .005  25.851  98.982
SDEV:     .007    .025    .000    .012    .052    .049    .007    .006    .096    .141    .108    .009    .008    .214    .007    .003    .149    .378
SERR:     .004    .014    .000    .007    .030    .028    .004    .003    .056    .081    .062    .005    .005    .124    .004    .002    .086
%RSD:     1.35    2.40    1.18   15.95    2.08     .60     .84    1.52     .40    1.18     .95    7.97    3.07    1.83   15.86   52.38     .57
STDS:      305     305     305    1016    1010    1009    1011    1005    1001    1007    1001      15      17      16    1002    1003     ---

STBE:   1.1015  1.6109  1.5555  1.0815  1.1033  1.1045  1.1121  1.1192  1.1052  1.1074  1.7178  1.0285  1.0041  1.0602  1.1277  1.1331     ---
STCT:   122.89  443.60  303.18   42.38   58.63   69.20   90.67  109.30   47.53   40.77   30.38  214.22  199.42  136.30  125.91  139.67     ---

UNBE:   1.0523  1.9534  2.5985  1.5694  1.1233  1.1249  1.1499  1.2111  1.1264  1.1310  1.6553  1.2332  1.4100  1.1961  1.2438  1.2452     ---
UNCT:     7.29   15.59     .10     .04    2.45    9.24    1.18     .65   19.45    8.12   27.19     .23     .47   19.71     .08     .01     ---
UNBG:     2.10    2.91    1.68     .23     .54     .69     .87     .96     .49     .39     .27    1.36     .68    1.06    1.20    1.47     ---
KRAW:    .0593   .0351   .0003   .0010   .0418   .1336   .0130   .0059   .4092   .1991   .8950   .0011   .0024   .1446   .0007   .0001     ---
PKBG:     4.47    6.35    1.06    1.19    5.54   14.34    2.36    1.68   40.45   22.03  101.47    1.17    1.70   19.66    1.07    1.01     ---
INT%:      .00   -4.43    -.03    ----  -24.06    -.89  -18.07  -82.33    ----    -.17    ----  -55.73    -.53    ----  -53.13  -44.13     ---


Scroll to the bottom of each "code" window to compare. It would be interesting for someone to calculate the differences in the U-Th-Pb "chemical dating" results between the two matrix corrections...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on October 26, 2015, 10:59:30 AM
Quote from: Probeman on October 25, 2015, 10:18:16 AM
I've recently updated the matrix.mdb file for fast Monte-Carlo matrix corrections.  The new binaries include additional light elements, actinides and rare-earth binaries, particularly Ce, La, P, U, Th and Pb.

I should add that I have one or two Monte-Carlo servers that could be pressed into service for some additional particular binaries or compositions that haven't yet been calculated...

Suggestions?
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on December 07, 2015, 12:20:28 PM
Julien Allaz asked me to calculate the Ti-Pt binary using Penepma (Penfluor/Fanal) and I've finished part of the calculation (Ti Ka in Pt)... here are the results:

Ti Ka in Pt calculated using the default Phi-rho-z from Armstrong/Love Scott/Reed with non-linear alpha factors:

(https://smf.probesoftware.com/oldpics/i63.tinypic.com/29ct8p3.jpg)

and here is the same binary, but using Penepma derived k-ratios:

(https://smf.probesoftware.com/oldpics/i65.tinypic.com/29mavkh.jpg)

Interesting that both both methods give about the same absolute correction, a small fluorescence correction, but with opposite slopes!   However, it should be pointed out that the different analytical methods don't agree very much either, and they are shown here all using the same fluorescence correction!

(https://smf.probesoftware.com/oldpics/i68.tinypic.com/16bawex.jpg)

Most surprising to me is that the old Heinrich method appears to yield the best agreement with the Penepma Monte-Carlo method!  Luck or skill?
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on December 07, 2015, 01:52:35 PM
Although oxygen is not a major constituent of Julien's Ti-Pt alloy, I thought I would also compare O in Ti and O in Pt for fun. Here is O Ka in Ti using the default Armstrong/Love-Scott/Reed corrections for calculating alpha factors:

(https://smf.probesoftware.com/oldpics/i65.tinypic.com/2801p3n.jpg)

Now here is the same binary using Penepma Monte-Carlo derived k-ratios:

(https://smf.probesoftware.com/oldpics/i66.tinypic.com/30jmohc.jpg)

Considering the magnitude of the matrix correction (very large MAC), they are is rough agreement.  Now for O in Pt, again using the default Armstrong/Love-Scott/Reed corrections for calculating alpha factors:

(https://smf.probesoftware.com/oldpics/i68.tinypic.com/5due51.jpg)

and again using Penepma Monte-Carlo derived k-ratios:

(https://smf.probesoftware.com/oldpics/i66.tinypic.com/20qnwy1.jpg)

All in all, in basic agreement...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on December 08, 2015, 01:45:57 PM
Although nitrogen is also not a significant component of Julien's Ti-Pt system, I decided to look at the N-Ti binary out of curiosity because as some of you may know, there is a nasty absorption edge there that produces a significant matrix correction (not to mention a nasty spectral interference). Unfortunately the matrix correction (and interference correction) is quite dependent on the chemical state if the Ti atom because it's a Ti L series interference and the M shell is involved in the chemical  bonding state.  But aside from all that this binary system display an interesting Monte-Carlo statistical issue that is worth mentioning.

Here is the N-Ti using the default Armatring/LogveScott/Reed analytical matrix corrections:

(https://smf.probesoftware.com/oldpics/i67.tinypic.com/30xk0nb.jpg)

It looks pretty reasonable. Now here is the same binary calculated using fast Monte-Carlo k-ratios from Penfluor/Fanal (matrix.mdb):

(https://smf.probesoftware.com/oldpics/i66.tinypic.com/259g6cn.jpg)

Holy donut holes Batman! That does not look good. What is going on?  The problem is statistics. Because of the low energies involved, the default binary calculation time of 110 hours is insufficient to obtain decent statistics for N ka, so we could calculate longer, or... we could just remove the high N concentration binaries from our fit by selecting the Penepma Limits option at say 90%, in the ZAF/Phi-Rho-Z/Alpha factor and Calibration Curve Options menu dialog as seen here:

(https://smf.probesoftware.com/oldpics/i58.tinypic.com/2j6ptk.jpg)

After we select this we get this:

(https://smf.probesoftware.com/oldpics/i66.tinypic.com/2difwqv.jpg)

Not perfect but good, and if we choose the non-linear fit we do even better:

(https://smf.probesoftware.com/oldpics/i67.tinypic.com/23sydg0.jpg)
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on December 08, 2015, 01:47:51 PM
Finally we look at the Pt Ma in Ti binary. Again here is the default Armstrong/Love-Scott/Reed Phi-rho-z:

(https://smf.probesoftware.com/oldpics/i66.tinypic.com/11c9pbb.jpg)

and note the significant difference with the Penepma Monte-Carlo:

(https://smf.probesoftware.com/oldpics/i63.tinypic.com/j95y0n.jpg)

Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on December 15, 2015, 10:00:15 AM
With the latest Penepma (Penfluor/fanal) binary k-ratio database update (see matrix.mdb), the following results are obtained with the Pouchou k-ratio database (without the B ka and Cu La measurements):

(https://smf.probesoftware.com/oldpics/i67.tinypic.com/95vips.jpg)

Compared to the previous result here:

http://smf.probesoftware.com/index.php?topic=47.msg3263#msg3263

this latest error distribution is slightly higher for the average and slightly improved for the standard deviation.

Progress...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on January 05, 2016, 08:29:53 AM
I'm about to release a new matrix.mdb k-ratio database from my ongoing Penepma Monte-Carlo calculations.

In particular, many of these latest binary compositions are for the REEs and actinide series elements.  And I would like to perform and post some comparisons between traditional analytical expressions and these new Penepma binary calculations for these elements, particularly the actinides...

Can those of you working in the EPMA nuclear characterization field please provide some examples of actinide binary pairs that you would find most helpful for your matrix corrections?  For example, Am La/Ma in Pu???
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Mike Matthews on January 05, 2016, 09:19:27 PM
Al, Am, C, Fe, Ga, Ni, O and U would be the top requests in my list.

...and Pu
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on January 06, 2016, 09:45:12 AM
Quote from: Mike Matthews on January 05, 2016, 09:19:27 PM
Al, Am, C, Fe, Ga, Ni, O and U would be the top requests in my list.

Hi Mike,
Perfect.

The Penepma binaries that are already calculated for these elements are as follows:

Penepma K-Ratio Alpha Factors:
Xray  Matrix   Alpha1  Alpha2  Alpha3  Alpha4
Ni ka in U     .7367   .1837  -.1886   .0000    *from Penepma 2012 Calculations
Fe ka in U     .8127   .0905  -.0362   .0000    *from Penepma 2012 Calculations
Al ka in U    1.5105   .4800  -.1656   .0000    *from Penepma 2012 Calculations
O ka in U    3.5118 -5.5011  9.6713   .0000    *from Penepma 2012 Calculations
Ni ka in Ga     .7277   .3683  -.3001   .0000    *from Penepma 2012 Calculations
Fe ka in Ga     .8370   .2470  -.2436   .0000    *from Penepma 2012 Calculations
Al ka in Ga    2.6465  -.0290  -.0772   .0000    *from Penepma 2012 Calculations
O ka in Ga    3.0362 -7.2413 10.7289   .0000    *from Penepma 2012 Calculations
C ka in Ga    5.6139  1.7763 -1.9722   .0000    *from Penepma 2012 Calculations
U ma in Ni    1.3002   .1365  -.0661   .0000    *from Penepma 2012 Calculations
Ga ka in Ni    1.1508   .0200  -.0086   .0000    *from Penepma 2012 Calculations
Fe ka in Ni     .7620   .4592  -.3626   .0000    *from Penepma 2012 Calculations
Al ka in Ni    2.4398  -.1169  -.0413   .0000    *from Penepma 2012 Calculations
O ka in Ni    2.6317 -7.4839 10.9035   .0000    *from Penepma 2012 Calculations
C ka in Ni    4.4830   .5990  -.8225   .0000    *from Penepma 2012 Calculations
U ma in Fe    1.2105   .1559  -.0372   .0000    *from Penepma 2012 Calculations
Ga ka in Fe    1.1250   .0983  -.1315   .0000    *from Penepma 2012 Calculations
Ni ka in Fe    1.0798   .0256  -.0120   .0000    *from Penepma 2012 Calculations
Al ka in Fe    2.0251   .0243  -.0913   .0000    *from Penepma 2012 Calculations
O ka in Fe    2.2125 -7.4945 10.9570   .0000    *from Penepma 2012 Calculations
C ka in Fe    3.2583   .4177  -.4456   .0000    *from Penepma 2012 Calculations
U ma in Al    1.4492   .0996  -.0010   .0000    *from Penepma 2012 Calculations
Ga ka in Al    1.1008   .3902  -.3712   .0000    *from Penepma 2012 Calculations
Ni ka in Al    1.0528   .0758  -.0400   .0000    *from Penepma 2012 Calculations
Fe ka in Al    1.0780   .2010  -.2520   .0000    *from Penepma 2012 Calculations
O ka in Al    3.0586 -7.4658 10.7455   .0000    *from Penepma 2012 Calculations
C ka in Al    7.8972   .6031 -1.9221   .0000    *from Penepma 2012 Calculations
U ma in O    1.3779   .3482  -.1499   .0000    *from Penepma 2012 Calculations
Ga ka in O    1.1752   .6630  -.2488   .0000    *from Penepma 2012 Calculations
Ni ka in O    1.1135   .2717  -.0710   .0000    *from Penepma 2012 Calculations
Fe ka in O    1.1522   .4001  -.4122   .0000    *from Penepma 2012 Calculations
Al ka in O    1.6517  -.0568  -.1022   .0000    *from Penepma 2012 Calculations
C ka in O    1.8118  -.1394   .0949   .0000    *from Penepma 2012 Calculations
U ma in C    1.3601   .2630   .0155   .0000    *from Penepma 2012 Calculations
Ga ka in C    1.0964  2.1334 -2.3743   .0000    *from Penepma 2012 Calculations
Ni ka in C    1.0986   .5467  -.3687   .0000    *from Penepma 2012 Calculations
Fe ka in C    1.1466   .4063  -.2857   .0000    *from Penepma 2012 Calculations
Al ka in C    1.3034  -.2479   .3163   .0000    *from Penepma 2012 Calculations
O ka in C    6.9004 -8.8507 10.6434   .0000    *from Penepma 2012 Calculations


I will check for the others as soon as the calculations are ready.
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on January 06, 2016, 11:16:33 AM
A good introduction to the use of alpha and beta factors can be found here:

http://epmalab.uoregon.edu/bence.htm

Basically, the matrix elements are reduced to binaries for off-line Monte-Carlo calculations (alpha factors) in advance, but later combined again for matrix corrections (beta factors) in real time.

This allows us to perform the Monte-Carlo calculations in advance. Otherwise it would take the age of the universe.    :o
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: wrigke on January 07, 2016, 08:29:33 AM
I'd suggest the following pairs:
U ma  Pu mb
U ma Np ma
U ma Am mb
Pu mb Np ma
Pu mb Am mb
Np ma Am mb
U ma C ka
U ma O ka
U ma Zr la
Pu mb Zr la
U ma Mo la
U ma Nd la

Thanks for your efforts!

Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on January 07, 2016, 09:12:03 AM
Hi Karen,
No need to specify the x-ray lines, as all available lines are calculated automatically with the Penepma Monte-Carlo code.  By the way, some of these binary pairs are calculated and available already, and here's how one can find out if they are:

1.  Run CalcZAF and click the Enter Composition by Formula String button as seen here:

(https://smf.probesoftware.com/oldpics/i67.tinypic.com/2r4o9pd.jpg)

2. Enter the elements (all of them) that you are interested in as seen here:

(https://smf.probesoftware.com/oldpics/i66.tinypic.com/23rvfwx.jpg)

For some of these actinide elements you may get some overvoltage warnings if your default operating voltage is under 20 keV. Just ignore these, or if you prefer, change the default keV to 20 in the Analytical | Operating Conditions menu and try again. 

Note also that you may get warnings regarding missing MAC values for some of these actinide elements (e.g., Am) if your x-ray databases do not have values for these elements.  These modified database files are available on request (and you already have them!) but, these missing MAC values are *not* necessary for the Penepma calculations as the k-ratio intensities are calculated from fundamental parameters!

3. From the Analytical | ZAF, Phi-Rho-Z, Alpha factor and Calibration Curve Selections menu, click the Polynomial Alpha Factors option and then check the Use Penepma K-ratios checkbox as seen here:

(https://smf.probesoftware.com/oldpics/i63.tinypic.com/2mpdgn6.jpg)

4. Finally click the Run | List Current Alpha Factors menu and see which binary pairs are available from Penepma Monte-Carlo calculations as seen here:

Penepma K-Ratio Alpha Factors:
Xray  Matrix   Alpha1  Alpha2  Alpha3  Alpha4
O ka in Pu    2.7028  -.6135  2.3234   .0000    *from Penepma 2012 Calculations
O ka in Np    3.6677   .2544  1.4957   .0000    *from Penepma 2012 Calculations
Mo la in U    1.1164  -.0435   .1787   .0000    *from Penepma 2012 Calculations
Zr la in U    1.2261   .0781   .0284   .0000    *from Penepma 2012 Calculations
O ka in U    4.1551   .6973  1.1366   .0000    *from Penepma 2012 Calculations
O ka in Nd    2.3311 -1.5983  2.8928   .0000    *from Penepma 2012 Calculations
C ka in Nd    2.1652   .9365  -.5294   .0000    *from Penepma 2012 Calculations
Zr la in Mo    1.0175  -.0331   .0910   .0000    *from Penepma 2012 Calculations
O ka in Mo    9.2251  1.2504 -1.1877   .0000    *from Penepma 2012 Calculations
C ka in Mo    9.6890  4.9851 -5.2894   .0000    *from Penepma 2012 Calculations
U ma in Zr    1.7090  -.0252  -.0740   .0000    *from Penepma 2012 Calculations
Mo la in Zr    1.8058  -.1545   .0953   .0000    *from Penepma 2012 Calculations
O ka in Zr    8.0640   .2963  -.0162   .0000    *from Penepma 2012 Calculations
C ka in Zr   10.9231  6.1915 -6.7884   .0000    *from Penepma 2012 Calculations
Pu la in O    3.4332-13.5762 20.2590   .0000    *from Penepma 2012 Calculations
Np la in O    3.7503-19.0111 29.3622   .0000    *from Penepma 2012 Calculations
U ma in O    1.1949   .4583  -.2719   .0000    *from Penepma 2012 Calculations
Nd la in O    1.2222   .1731  -.0761   .0000    *from Penepma 2012 Calculations
Mo la in O    1.1821   .0278   .0545   .0000    *from Penepma 2012 Calculations
Zr la in O    1.2404  -.0669   .1358   .0000    *from Penepma 2012 Calculations
C ka in O    2.0980  -.1984   .1442   .0000    *from Penepma 2012 Calculations
U ma in C    1.1587   .2905   .0099   .0000    *from Penepma 2012 Calculations
Nd la in C    1.2121   .0938   .1284   .0000    *from Penepma 2012 Calculations
Mo la in C    1.0433   .0165   .1176   .0000    *from Penepma 2012 Calculations
Zr la in C    1.0258   .1284  -.0654   .0000    *from Penepma 2012 Calculations
O ka in C    8.6296 -3.8210  2.4080   .0000    *from Penepma 2012 Calculations

Note that there is a fitting problem with C ka in U that I am fixing this weekend (not shown). Next week I should have a bunch more actinide pairs to release, so stay tuned!   :)
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on January 25, 2016, 11:54:26 AM
Here is a comparison of the carbon-lead binary between the JTA correction and the fast Monte-Carlo method.

Some significant differences, but which one is "correct"?  :o

See attachments below.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on January 26, 2016, 10:31:53 PM
The matrix.mdb Penepma (Penfluor/Fanal) binary k-ratio database now contains over 300,000 k-ratios (2805 binaries). That's almost 2/3 of the periodic table.

The complete list is here:

http://probesoftware.com/download/Calculated%20Matrix%20Binaries.txt
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on March 02, 2016, 10:52:58 AM
I just released a new matrix.mdb k-ratio database with many new binaries, but because it doesn't get automatically updated unless you run the CalcZAF.msi file, I've provided a link below to allow one to download it manually.  It should be copied to the C:\ProgramData\Probe Software\Probe for EPMA folder (or under XP the C:\Documents and Settings\All Users\Probe Software\Probe for EPMA folder).

http://www.probesoftware.com/download/Matrix.mdb

Here is the Pouchou database calculated using phi-rho-z (JTA/improved Reed):

(https://smf.probesoftware.com/gallery/395_02_03_16_10_50_50.png)

And here with polynomial alpha factors fitted to k-ratios from Penepma (Penfluor/Fanal):

(https://smf.probesoftware.com/gallery/395_02_03_16_10_52_06.png)

Cool.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on April 09, 2016, 08:07:36 AM
The latest matrix.mdb (see above post for link) contains an additional 59 binaries, mostly REE and actinides.

That makes over 326K binary k-ratios! 8)
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on April 13, 2016, 11:07:43 AM
The error distributions for the Pouchou dataset comparing traditional analytical expressions (JTA/Modified Reed) and the new fast Monte-Carlo matrix correction methods have been previously compared here:

http://smf.probesoftware.com/index.php?topic=47.msg4159#msg4159

But I thought it would be interesting to try the same comparison for the Bastin k-ratio dataset which I obtained from Brian Joy earlier this year.  There is some overlap between the two datasets, but the Bastin dataset has some crazy large overvoltages that should really stress the corrections, so let's see how they do.  First the Bastin dataset using the traditional analytical expressions (JTA/Modified Reed):

(https://smf.probesoftware.com/gallery/395_13_04_16_10_55_39.png)

The average is good, but the standard deviation is larger than what we get from the Pouchou dataset and the reason is the very high overvoltage outliers (plus one very low overvoltage k-ratio) seen circled in the image and listed here:

Problematic k-ratio errors (< 0.8 or > 1.2)
  Line             ConcA   ConcB     TOA      eO      Uo   K-Exp   K-Cal   K-Err
121   Ag la in Au .199600 .800400 52.5000 48.5000 14.4690 .079500 .063394 .797408
348   Al ka in Mg .091000 .909000 75.0000 40.0000 25.6410 .012300 .015082 1.22615
360   Al ka in Mg .091000 .909000 20.0000 40.0000 25.6410 .006900 .008550 1.23914
436   Nb la in V  .080000 .920000 20.0000 40.0000 16.8705 .053000 .064454 1.21612


These high overvoltage outliers also tend to be low concentrations, so accuracy errors in the "known" compositions could be an additional factor as seen here:

(https://smf.probesoftware.com/gallery/395_13_04_16_11_00_50.png)

Note that I've included the complete k-ratio dataset including the B ka in carbon k-ratios, but these low energy emission lines do not seem to be problematic.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on April 13, 2016, 12:00:00 PM
Now let's try the same thing using the Penfluor/Fanal fast Monte-Carlo method on this Bastin k-ratio dataset using polynomial alpha factor fitting:

(https://smf.probesoftware.com/gallery/395_13_04_16_11_26_35.png)

Something has gone south on us and it's those very high overvoltage k-ratios as seen here:

Problematic k-ratio errors (< 0.8 or > 1.2)
  Line             ConcA   ConcB     TOA      eO      Uo   K-Exp   K-Cal   K-Err
14    Au ma in Cu .300000 .700000 40.0000 31.5000 14.2792 .177300 .216098 1.21883
15    Au ma in Cu .300000 .700000 40.0000 36.6000 16.5911 .171700 .207533 1.20869
16    Au ma in Cu .300000 .700000 40.0000 39.7000 17.9964 .168900 .202966 1.20169
227   Au ma in Cu .201200 .798800 52.5000 30.0000 13.5993 .122000 .146576 1.20144
228   Au ma in Cu .201200 .798800 52.5000 40.0000 18.1324 .110000 .134807 1.22552
345   Al ka in Mg .091000 .909000 75.0000 25.0000 16.0256 .025800 .033720 1.30698
346   Al ka in Mg .091000 .909000 75.0000 30.0000 19.2308 .019800 .027770 1.40252
347   Al ka in Mg .091000 .909000 75.0000 35.0000 22.4359 .015200 .023329 1.53478
348   Al ka in Mg .091000 .909000 75.0000 40.0000 25.6410 .012300 .019971 1.62368
351   Al ka in Mg .091000 .909000 52.5000 20.0000 12.8205 .030200 .037609 1.24535
352   Al ka in Mg .091000 .909000 52.5000 25.0000 16.0256 .022100 .029937 1.35460
353   Al ka in Mg .091000 .909000 52.5000 30.0000 19.2308 .016800 .024434 1.45442
355   Al ka in Mg .091000 .909000 20.0000 15.0000 9.61539 .025200 .030915 1.22677
356   Al ka in Mg .091000 .909000 20.0000 20.0000 12.8205 .016900 .022333 1.32147
357   Al ka in Mg .091000 .909000 20.0000 25.0000 16.0256 .012200 .017164 1.40685
358   Al ka in Mg .091000 .909000 20.0000 30.0000 19.2308 .009500 .013918 1.46507
359   Al ka in Mg .091000 .909000 20.0000 35.0000 22.4359 .007900 .011811 1.49501
360   Al ka in Mg .091000 .909000 20.0000 40.0000 25.6410 .006900 .010408 1.50844
367   Al ka in Fe .100000 .900000 75.0000 40.0000 25.6410 .021800 .027727 1.27190
371   Al ka in Fe .100000 .900000 52.5000 25.0000 16.0256 .033500 .040724 1.21563
372   Al ka in Fe .100000 .900000 52.5000 30.0000 19.2308 .026600 .033607 1.26343
375   Al ka in Fe .100000 .900000 20.0000 20.0000 12.8205 .024900 .030930 1.24219
376   Al ka in Fe .100000 .900000 20.0000 25.0000 16.0256 .018500 .024065 1.30079
377   Al ka in Fe .100000 .900000 20.0000 30.0000 19.2308 .014900 .019693 1.32171
378   Al ka in Fe .100000 .900000 20.0000 35.0000 22.4359 .012600 .016823 1.33512
379   Al ka in Fe .100000 .900000 20.0000 40.0000 25.6410 .011400 .014890 1.30614
436   Nb la in V  .080000 .920000 20.0000 40.0000 16.8705 .053000 .065254 1.23122
645   Al ka in Ni .125000 .875000 40.0000 31.9000 20.4487 .023300 .028246 1.21229
646   Al ka in Ni .125000 .875000 40.0000 37.2000 23.8462 .019500 .023487 1.20444
650   Al ka in Ni .049000 .951000 40.0000 21.2000 13.5897 .014300 .017270 1.20770
651   Al ka in Ni .049000 .951000 40.0000 26.6000 17.0513 .009800 .013345 1.36171
652   Al ka in Ni .049000 .951000 40.0000 31.9000 20.4487 .007500 .010757 1.43433
653   Al ka in Ni .049000 .951000 40.0000 37.2000 23.8462 .006800 .008957 1.31725

Yes, these are overvoltages of 10 or 20 and higher so it's not good, but not surprising when running Al Ka at 30 or 40 keV!

Let's examine one or two of these cases in more detail, for example Al Ka in Mg at 30 keV. Here is a plot of the alpha factors for all analytical expression matrix corrections but first at a more normal 15 keV:

(https://smf.probesoftware.com/gallery/395_13_04_16_11_39_24.png)

There is a significant difference of opinion here, with about a 10% variation in the correction factor.  If we plot the same thing at 30 keV, there is even more disagreement in the analytical expressions:

(https://smf.probesoftware.com/gallery/395_13_04_16_11_43_00.png)

The variation is now around 15% between the different models.  So where does our Penfluor/Fanal based Monte-Carlo method put us?

(https://smf.probesoftware.com/gallery/395_13_04_16_11_46_54.png)

Pretty much "smack dab in the middle of the pack". The lesson here is that even a small difference in the matrix corrections can make a significant difference in accuracy, when their magnitude is this large.  I guess the other lesson is: don't run your analyses with an overvoltage of 20 or 30 if you want accuracy. For improving sensitivity? Maybe a larger analytical volume will help. But certainly not for accuracy.

Just for fun, let's run these Bastin k-ratios with the PAP correction (XPP):

(https://smf.probesoftware.com/gallery/395_13_04_16_11_54_23.png)

Significantly better. Of course this makes sense as the PAP correction was optimized using a related dataset  from Pouchou which was selected for large absorption corrections.

My "bottom line"? If you are going to have excessively large absorption corrections, whether they be from very high overvoltages or from very low energy emission lines, I would stick with the analytical expressions.  But for large atomic number corrections or large fluorescence corrections I think the Penfluor/Fanal corrections will be your best bet.

As they say: your mileage (or kilometerage) may vary!    ;D
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on June 13, 2016, 05:35:46 PM
The latest distribution of CalcZAF (v. 11.5.1) contains an updated matrix.mdb k-ratio database with 3087 binaries (over 337K k-ratios) for the fast Monte-Carlo matrix correction option.

See here for the complete list:

http://probesoftware.com/download/Calculated%20Matrix%20Binaries.txt
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on June 30, 2016, 08:27:30 AM
The latest CalcZAF.msi deployment contains a new matrix.mdb file for fast Monte-Carlo matrix corrections.

This database now contains 346K k-ratios for most element pairs in the periodic table (I'd be interested if anyone had the inclination to visualize these k-ratios in some way- it might make for interesting "science art").

(https://smf.probesoftware.com/gallery/395_30_06_16_8_22_43.png)

This latest error distribution for the Pouchou binary database shows a slightly better average, and slightly worse variance than the previous database.  Still with a standard deviation of under 3%, this is better than any analytical based matrix correction I am aware of.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on July 05, 2016, 01:12:32 PM
I decided to try the new 4 coefficient non-linear alpha factor fit to the Pouchou binary k-ratio database and indeed the accuracy and variance are both improved slightly (compared to the previous post using polynomial alpha factors) as seen here:

(https://smf.probesoftware.com/gallery/395_05_07_16_1_09_14.png)

I am now focusing on calculating k-ratios at higher precision to deal with low concentration and low overvoltage situations and will post these results soon...
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on August 26, 2016, 11:43:06 AM
The latest CalcZAF.msi contains a new matrix.mdb k-ratio database with over 367K binary k-ratios from Monte-Carlo calculations that further improves accuracy for the fast Monte-Carlo based matrix corrections.  The previous error histogram from the Pouchou k-ratio database was here (the post just above the non-linear post):

http://smf.probesoftware.com/index.php?topic=47.msg4740#msg4740

The new matrix database is slightly improved in accuracy and with a smaller variance as seen here:

(https://smf.probesoftware.com/gallery/395_26_08_16_11_42_05.png)

The main outliers are from extremely high overvoltage measurements for relatively low energy emission lines such as Al Ka in Ni at 48 keV... which is simply a limitation of the accuracy of the photon scattering factor tables utilized by the Penepma code.
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on October 07, 2016, 03:15:16 PM
The latest matrix.mdb contains over 377K k-ratios for fast Monte Carlo calculations for matrix corrections.  Most of the new additions are mid z element pairs.
john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: Probeman on March 14, 2017, 06:45:58 PM
The latest matrix.mdb k-ratio database now contains over 380K k-ratios for binary compositions from Penfluor-Fanal calculations.  The new additions are mostly high emitters absorbed by low matrices, e.g., Nb La in B or C. You can update by using the CalcZAF Help | Update CalcZAF menu or downloading the matrix.mdb directly here:

http://www.probesoftware.com/download/Matrix.mdb

john
Title: Re: Penepma/Penfluor/Fanal derived Alpha Factors For Matrix Corrections
Post by: John Donovan on August 02, 2017, 08:27:01 PM
The latest version of CalcZAF/Probe for EPMA (v. 11.9.6) contains a new update to the matrix.mdb k-ratio database for fast Monte Carlo based matrix corrections.

This latest release adds about 100K more k-ratios for a total of ~394K k-ratios in the matrix.mdb database. Many of the new binaries are for REE and actinide binaries.

Please let me know if you have any questions.
john