News:

:) All Electron Probe Micro-Analysts are welcome to register and post!

Main Menu

New Features In Probe for EPMA

Started by John Donovan, August 20, 2013, 10:49:14 AM

Previous topic - Next topic

Probeman

#30
The latest v. 10.6.8 is out for our beta testers but in the meantime allow me to show one of the many useful new features in this version.

When using combined condition samples, that is, samples with multiple analytical or column conditions, the program will display all condition sets found as they are edited.

Previously to change the conditions for a set of elements, one had to select each element and specify the new conditions and then click the Apply button. Now one can simply one of the elements in that condition and click the Apply Conditions To All Elements button to change the condition for all other elements sharing that condition number as seen here with the original condition set to 30 nA:



and then after changing the beam current to 40 nA and clicking the Apply Conditions To All Elements button as seen here:

The only stupid question is the one not asked!

John Donovan

All,
The latest PFE v. 10.6.9 is ready to download.

It includes a large number of nice changes.  For example the element acquisition graphics are improved as seen here:



Ready for JEOL and Cameca users to update from your Help menu.
john
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

#32
Paul Carpenter found a problem in the fluorescence correction which is fixed.

If you downloaded PFE or CalcZAF in the last week, please update again.

Thanks.
john

Edit: Since I didn't bump the version number for this fix, if you previously installed v. 10.6.9, you'll have to update twice to force a "repair" on the installation to get a proper update.  Sorry!
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

Now in v. 10.7.5 PFE will automatically acquire absorbed currents during TDI and alternating on/off acquisitions.

From the Run | Display Time Dependent (TDI) and... menu you can see the data as shown here:

John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

I've added new check boxes to output both beam and absorbed current measurements. Combined condition samples will have a different beam current and absorbed current for each condition.

For example if you acquire a normal sample without absorbed current, the data output will now look like this:

On-Peak (off-peak corrected) or MAN On-Peak X-ray Counts (cps/1nA) (and Faraday/Absorbed Currents):
ELEM:     o ka   mo la   nb la   ta la   zr la   ti ka   BEAM1 BEAM2
BGD:       OFF     OFF     OFF     OFF     OFF     OFF
SPEC:        1       2       2       3       4       5
CRYST:     PC1    LPET    LPET    LLIF     PET     LIF
ORDER:       1       1       2       1       1       1
  166G    4.22     .55  354.47     .45    -.04     .31  29.942 29.939
  167G    3.50     .26  353.02     .37    -.05     .34  29.940 29.940
  168G    3.78     .48  353.68     .34    -.05     .43  29.939 29.939
  169G    3.89     .55  348.08     .40    -.10    2.32  29.943 29.942
  170G    3.94     .26  319.75     .34    -.04   15.24  29.940 29.937
  171G    4.49     .36  234.83     .46    -.03   52.23  29.937 29.943
  172G    4.31     .28  202.24     .37     .00   66.92  29.942 29.940
  173G    4.07     .19  160.32     .30    -.02   85.47  29.940 29.937
  174G    3.98     .09  152.36     .19    -.01   90.38  29.939 29.943
  175G    3.73     .17  143.48     .15    -.01   94.09  29.939 29.939
  176G    3.72     .09  136.56     .15     .00   97.18  29.942 29.940
  177G    3.49     .10  132.06     .19    -.01   99.64  29.939 29.940
  178G    3.71     .16  127.13     .11    -.06  102.87  29.934 29.943
  179G    3.59    -.06  123.72    -.01    -.05  104.13  29.945 29.933
  180G    3.71     .08  120.16     .24    -.02  106.32  29.939 29.940

AVER:     3.87     .24  217.46     .27    -.03   61.19  29.940 29.940
SDEV:      .29     .18   98.92     .14     .03   44.49    .003 .003
1SIG:      .08     .04     .60     .07     .01     .20
SIGR:     3.86    4.01  165.56    1.93    2.15  220.06
SERR:      .08     .05   25.54     .04     .01   11.49
%RSD:     7.60   76.19   45.49   50.57  -77.77   72.70


Notice the new headers showing the before and after beam current measurements.  Also the user specified output now had these check boxes:


John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

This is a nice new feature for the Multi-Point background (MPB) method. 

Now PFE will circle the data points actually utilized in the background regression as seen here:

John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

#36
I've started to split the wavescan plotting from the std/unk plotting.  Here is what the new Plot! window looks like now:



The main difference is that this new Plot! window for wavescans, is that it treats *samples* as Y data sets, as opposed to the old Plot! window which treated multiple Y data types as data sets.

The old Plot! window for std and unk data type plotting is now accessed from the Output menu.  It still contains the old wavescan code which I will remove this weekend.
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

#37
This is a very small feature, but I think very useful.

Have you ever wanted to navigate small distances in the Automate! window, maybe using the Go button, but the beam is blanked automatically each time the stage moves?  Well, now you can just check this box as seen here:



and the beam will stay on for both Go button clicks and also on double clicks on single positions in the grid control. 

Useful for confirming say traverse start and end points before acquisition.

On a related note I also decided to make the existing checkbox in the StageMap window default to using the beam blank when moving the stage.  I've double-clicked there too many times and watched a line drawn on the sample mount as it moves to the new location!

John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

All,
I modified the Automate! (and Position!) window standard lists so the standard numbers now list in numerical order. This was accomplished by prefixing zeros in front of the std numbers as suggested by Graham Hutchison:



Download v. 10.7.9 when ready.
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

#39
The latest version of PFE now allows one to export all config files to the PFE app folder from the File menu as seen here:



This may be useful for updating off-line computers for data processing or exporting selected config files to the user data file folder as seen here:

John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

#40
Here's a cool new feature in PFE from the Calculation Options dialog: one can now specify not only an element (or element oxide) by difference from 100%, but also a formula by difference from 100%, for example, Li2B4O7 by difference as seen here:



Without the formula Li2B4O7 by difference, this is what one might see measuring traces in a lithium borate flux:

Un    4 unknown sample, Results in Elemental Weight Percents

ELEM:       Cl       S       K      Ca       V       O       B      Li
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC    SPEC
BGDS:      LIN     LIN     LIN     LIN     LIN
TIME:    10.00   10.00   10.00   10.00   10.00
BEAM:    30.00   30.00   30.00   30.00   30.00

ELEM:       Cl       S       K      Ca       V       O       B      Li   SUM
    12    .034    .109    .974    .027    .180    .458    .000    .000   1.782
    13    .021    .338    .994    .138    .186    .852    .000    .000   2.529

AVER:     .027    .224    .984    .083    .183    .655    .000    .000   2.155
SDEV:     .009    .162    .014    .078    .004    .278    .000    .000    .528
SERR:     .006    .114    .010    .055    .003    .197    .000    .000
%RSD:    32.25   72.32    1.42   94.83    2.43   42.50     .00     .00
STDS:      285     730     374     468      23       0       0       0

STKF:    .0601   .5061   .1132   .0684   .6328   .0000   .0000   .0000
STCT:    19.96  169.08   37.88   23.04  210.31     .00     .00     .00

UNKF:    .0003   .0022   .0093   .0007   .0015   .0000   .0000   .0000
UNCT:      .09     .73    3.13     .24     .50     .00     .00     .00
UNBG:      .96    1.70     .94    1.15    1.54     .00     .00     .00

ZCOR:   1.0582  1.0145  1.0526  1.1561  1.2074   .0000   .0000   .0000
KRAW:    .0043   .0043   .0826   .0105   .0024   .0000   .0000   .0000
PKBG:     1.09    1.43    4.35    1.21    1.33     .00     .00     .00


With the Li2B4O7 by difference we obtain this analysis:

Un    4 unknown sample, Results in Elemental Weight Percents

ELEM:       Cl       S       K      Ca       V       O       B      Li
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    FORM    FORM    FORM
BGDS:      LIN     LIN     LIN     LIN     LIN
TIME:    10.00   10.00   10.00   10.00   10.00
BEAM:    30.00   30.00   30.00   30.00   30.00

ELEM:       Cl       S       K      Ca       V       O       B      Li   SUM
    12    .037    .118   1.027    .025    .182  65.788  25.215   8.092 100.483
    13    .022    .360   1.028    .130    .188  65.970  25.128   8.064 100.889

AVER:     .029    .239   1.027    .078    .185  65.879  25.171   8.078 100.686
SDEV:     .011    .171    .001    .074    .004    .129    .061    .020    .287
SERR:     .007    .121    .001    .053    .003    .091    .043    .014
%RSD:    36.28   71.40     .09   95.52    2.17     .20     .24     .24
STDS:      285     730     374     468      23       0       0       0

STKF:    .0601   .5061   .1132   .0684   .6328   .0000   .0000   .0000
STCT:    19.96  169.08   37.88   23.04  210.31     .00     .00     .00

UNKF:    .0003   .0022   .0093   .0007   .0015   .0000   .0000   .0000
UNCT:      .09     .73    3.13     .24     .50     .00     .00     .00
UNBG:      .96    1.70     .94    1.15    1.54     .00     .00     .00

ZCOR:   1.1184  1.0881  1.0993  1.0801  1.2216   .0000   .0000   .0000
KRAW:    .0043   .0043   .0826   .0105   .0024   .0000   .0000   .0000
PKBG:     1.09    1.43    4.35    1.21    1.33     .00     .00     .00

Un    4 unknown sample, Results Based on 2 Atoms of li

ELEM:       Cl       S       K      Ca       V       O       B      Li   SUM
    12    .002    .006    .045    .001    .006   7.052   4.000   2.000  13.112
    13    .001    .019    .045    .006    .006   7.096   4.000   2.000  13.173

AVER:     .001    .013    .045    .003    .006   7.074   4.000   2.000  13.143
SDEV:     .001    .009    .000    .003    .000    .031    .000    .000    .043
SERR:     .000    .006    .000    .002    .000    .022    .000    .000
%RSD:    36.06   71.58     .33   95.65    2.42     .44     .00     .00
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Probeman

#41
Here's a nice new feature suggested by Julie Chouinard that allows the user to have the software not normalize the specified element concentrations for particle corrections as seen here:



So, let's take a look. Here are some asbestos data without a particle correction.  The fiber sizes vary, but were in the ball park of a few microns.  If we had the correct fiber diameter specified for each data point the totals would be much closer to 100%, but the geometry effect correction is roughly the same for similar sized fibers (or particles).

ELEM:       Na       K      Al      Fe      Si      Mg      Ca       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     LIN     MAN     MAN     MAN     MAN     MAN
TIME:   120.00   40.00  120.00  120.00   90.00   90.00   90.00
BEAM:    10.05   10.05   10.05   10.05   10.05   10.05   10.05

ELEM:       Na       K      Al      Fe      Si      Mg      Ca       O       H   SUM 
   152    .017    .269    .406    .030   1.614    .028    .159  19.226   2.126  23.876
   153    .045    .447    .832    .592   3.322    .235    .239  21.927   2.126  29.766
   154    .101   1.180   1.961    .143   6.609    .172   1.229  27.070   2.126  40.591
   155    .006    .025    .055    .016    .178    .001    .021  17.146   2.126  19.574
   156    .058    .901   1.224    .051   5.172    .070    .471  24.309   2.126  34.382
   157    .020    .126    .203    .004    .877    .004    .073  18.120   2.126  21.553
   158    .082   1.335   2.447    .131  12.609    .119    .773  34.142   2.126  53.764
   159    .070    .184    .250    .013   1.098    .016    .119  18.471   2.126  22.347
   160    .013    .394    .505    .055   2.925    .089    .451  20.996   2.126  27.555
   161    .047    .551    .959    .014   3.517    .042    .397  22.053   2.126  29.707
   162    .123   2.299   4.300    .191  15.954    .219   3.363  40.931   2.126  69.505
   163    .041    .020    .010   -.011    .152    .007   -.001  17.075   2.126  19.419
   164    .039    .040    .077    .096    .407    .051    .042  17.505   2.126  20.382
   165    .030    .001    .015    .005    .069   -.002   -.006  16.973   2.126  19.210
   166    .063   1.033   1.895    .211   7.976    .189    .698  28.344   2.126  42.534
   167   -.005    .019    .032   -.013    .184    .006    .003  17.116   2.126  19.468
   168    .039    .015    .041   -.014    .231    .006    .001  17.190   2.126  19.633

AVER:     .046    .520    .895    .089   3.700    .074    .472  22.270   2.126  30.192
SDEV:     .034    .639   1.171    .148   4.689    .083    .821   6.857    .000


Note the ratio between the averages and standard deviations. Note also that 19% H2O has been specified to the matrix since this is an amphibole asbestos and that is about what it should have. Now we apply the particle correction assuming a 3 um diameter rod or fiber:

ELEM:       Na       K      Al      Fe      Si      Mg      Ca       O       H   SUM 
   152    .149   1.800   2.731    .371  10.758    .271   1.231  75.214   7.476 100.000
   153    .227   2.176   3.951   2.693  15.971   1.091   1.281  67.198   5.413 100.000
   154    .301   3.789   6.087    .529  20.901    .556   3.971  60.324   3.542 100.000
   155    .118    .233    .732    .384   1.870    .145    .441  85.690  10.387 100.000
   156    .229   3.577   4.733    .322  20.301    .319   1.951  64.167   4.402 100.000
   157    .187    .992   1.713    .249   6.971    .150    .776  80.150   8.812 100.000
   158    .185   3.007   5.395    .356  28.204    .290   1.782  58.301   2.480 100.000
   159    .470   1.362   1.946    .306   8.183    .219   1.071  78.130   8.313 100.000
   160    .109   2.128   2.720    .439  15.632    .515   2.546  69.900   6.012 100.000
   161    .229   2.673   4.539    .226  16.875    .267   2.029  67.765   5.396 100.000
   162    .196   3.864   7.020    .360  26.412    .371   5.597  54.345   1.836 100.000
   163    .373    .188    .345    .189   1.653    .198    .247  86.270  10.537 100.000
   164    .329    .344    .857    .986   3.682    .521    .591  82.991   9.700 100.000
   165    .299    .006    .395    .330    .910    .127    .200  86.993  10.740 100.000
   166    .191   3.114   5.556    .682  23.781    .571   2.161  60.612   3.331 100.000
   167    .034    .177    .535    .180   1.941    .193    .276  86.186  10.478 100.000
   168    .349    .134    .609    .170   2.330    .188    .256  85.631  10.333 100.000

AVER:     .234   1.739   2.933    .516  12.140    .352   1.553  73.522   7.011 100.000
SDEV:     .109   1.418   2.270    .596   9.512    .242   1.458  11.376   3.153    .000



The relative variance of the different data points is less and therefore improved, but note however that the specified H2O is also being normalized along with the measured elements and this is not physically realistic, so we turn on the "Do Not Normalize Specified Element Concentrations..." check box and now get an even further improved data set as seen here:


Un    4 Rome, OR, Results in Normalized Elemental Weight Percents (Particle Corrections)

ELEM:       Na       K      Al      Fe      Si      Mg      Ca       O       H   SUM 
   152    .363   4.392   6.664    .905  26.252    .662   3.005  55.631   2.126 100.000
   153    .357   3.413   6.200   4.225  25.058   1.711   2.010  54.900   2.126 100.000
   154    .356   4.491   7.214    .627  24.772    .659   4.706  55.049   2.126 100.000
   155   1.331   2.633   8.260   4.339  21.111   1.638   4.976  53.585   2.126 100.000
   156    .305   4.776   6.320    .430  27.106    .426   2.605  55.906   2.126 100.000
   157    .713   3.782   6.530    .947  26.568    .572   2.958  55.803   2.126 100.000
   158    .192   3.129   5.614    .370  29.351    .302   1.855  57.061   2.126 100.000
   159   1.480   4.291   6.130    .963  25.778    .689   3.375  55.167   2.126 100.000
   160    .191   3.724   4.761    .768  27.364    .902   4.457  55.707   2.126 100.000
   161    .358   4.181   7.101    .354  26.398    .418   3.174  55.890   2.126 100.000
   162    .190   3.744   6.802    .349  25.592    .359   5.423  55.416   2.126 100.000
   163   5.177   2.614   4.788   2.626  22.951   2.747   3.424  53.546   2.126 100.000
   164   2.002   2.090   5.215   6.002  22.401   3.168   3.595  53.400   2.126 100.000
   165   6.020    .120   7.954   6.645  18.352   2.568   4.032  52.182   2.126 100.000
   166    .220   3.592   6.408    .787  27.427    .658   2.492  56.289   2.126 100.000
   167    .436   2.253   6.811   2.290  24.722   2.458   3.516  55.389   2.126 100.000
   168   3.691   1.421   6.442   1.798  24.653   1.987   2.709  55.172   2.126 100.000

AVER:    1.375   3.215   6.424   2.025  25.050   1.290   3.430  55.064   2.126 100.000
SDEV:    1.836   1.232    .964   2.051   2.649    .968   1.015   1.225    .000    .000


Un    4 Rome, OR, Results in Normalized Oxide Weight Percents (Particle Corrections)

ELEM:     Na2O     K2O   Al2O3     FeO    SiO2     MgO     CaO       O     H2O   SUM 
   152    .490   5.290  12.592   1.164  56.163   1.097   4.204    .000  19.000 100.000
   153    .481   4.112  11.714   5.435  53.608   2.838   2.812    .000  19.000 100.000
   154    .480   5.410  13.631    .807  52.995   1.092   6.585    .000  19.000 100.000
   155   1.795   3.172  15.608   5.583  45.165   2.716   6.962    .000  19.000 100.000
   156    .412   5.754  11.941    .554  57.989    .707   3.644    .000  19.000 100.000
   157    .962   4.556  12.338   1.219  56.838    .948   4.140    .000  19.000 100.000
   158    .259   3.769  10.608    .476  62.792    .500   2.595    .000  19.000 100.000
   159   1.995   5.169  11.583   1.239  55.148   1.143   4.722    .000  19.000 100.000
   160    .257   4.486   8.995    .988  58.542   1.496   6.236    .000  19.000 100.000
   161    .482   5.037  13.417    .456  56.474    .693   4.442    .000  19.000 100.000
   162    .255   4.510  12.852    .449  54.751    .595   7.588    .000  19.000 100.000
   163   6.979   3.149   9.047   3.378  49.101   4.555   4.791    .000  19.000 100.000
   164   2.699   2.518   9.853   7.722  47.924   5.253   5.031    .000  19.000 100.000
   165   8.115    .145  15.029   8.549  39.261   4.259   5.642    .000  19.000 100.000
   166    .297   4.327  12.108   1.013  58.677   1.092   3.487    .000  19.000 100.000
   167    .587   2.715  12.869   2.946  52.889   4.075   4.919    .000  19.000 100.000
   168   4.975   1.712  12.171   2.314  52.742   3.295   3.790    .000  19.000 100.000

AVER:    1.854   3.872  12.139   2.605  53.592   2.139   4.799    .000  19.000 100.000
SDEV:    2.475   1.484   1.821   2.639   5.667   1.606   1.421    .000    .000    .000


Pretty cool actually!
The only stupid question is the one not asked!

John Donovan

Here's a useful idea:

Create a Probe for EPMA run database and name it something like "PFE Configuration History.MDB" and save it to your user data folder.

Then whenever you make any changes to your PFE config files (Probewin.ini, Scalers.dat, Motors.dat, etc.), open this database up and click the File | Import Probe Configuration Files menu as seen here:



and the program will save a complete copy of your modified files. For future posterity of course!
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Probeman

I have improved the time estimation code in PFE for both individual points and also automated acquisition.  I think the accuracy is around 5% at this time, but that may vary from instrument to instrument.

Note that you can get an exact measurement of the time estimate accuracy for automated acquisition by observing the "percent error" display at the end of the automation, *before* you click "OK" as seen here in this screen shot of the Automate! window:



I would be very interested to get feedback from all users (especially JEOL instrument users) on how accurate the time estimate is for different acquisition types.
The only stupid question is the one not asked!

Probeman

Now that we can measure absorbed current to arbitrary precision (by averaging many A to D conversions in PFE), I was curious to see if we can measure channeling effects in various materials.  So we've all seen how different orientations of Zn metal grains in a polished sample can show variations of BSE as seen here (not all measurements shown on image)...



Well maybe we can detect that in the absorbed current measurements as well.  This is the same image with a plot of absorbed current for the smaller traverse using 20 A-D averages per point:



So it seems we can.  I wonder if there is any use for this type of absorbed current measurement?
The only stupid question is the one not asked!