Probe Software Users Forum

Software => Probe for EPMA => Topic started by: John Donovan on July 02, 2013, 12:50:22 PM

Title: Tips and Tricks for PFE quant
Post by: John Donovan on July 02, 2013, 12:50:22 PM
Here's a good one:  have you ever noticed that each time you "analyze" (calculate the composition of) a standard as an unknown the program takes extra time to reload all the drift arrays?  It's because the standard probably has different elements from the previous analysis because the program automatically adds in elements that are present in the standard but not analyzed in the current setup. For example, a trace Pb in the REE stds when analyzing for REEs and P only.

You can eliminate 99% of that overhead by simply specifying all the unanalyzed elements in the standards to all standard samples from the Analyze! Elements/Cations button. Any element entered without an x-ray line is treated as a specified element.

Once this is done, when "analyzing" standard samples as unknowns, the program will automatically load the unanalyzed element concentrations as usual, but since the element setup will be the same for all standards, the calculations will proceed much quicker!   8)
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on October 02, 2013, 03:44:45 PM
We've had a rash of "flashovers" in our gun this week, each time killing the instrument electronics and vacuum. We've now tried cleaning the gun HV insulator and so far so good.

But when this event occurred, both the PeakSight and Probe for EPMA (and Thermo) software are locked up (because there's nothing for them to talk to I guess!), and we have to use the Task manager on both computers to kill the open apps. I also log out on each computer to make sure the driver instances get unloaded completely (but a full re-boot isn't necessary it seems).

Anyway, once we get the instrument electronics re-set and the PeakSight software started and the instrument has finished its self test, you might note that some buttons are "grayed out" in PFE. For example, the Faraday button may be "grayed out" if the stage was moving when the "flashover" occurred as seen here:

(https://smf.probesoftware.com/oldpics/i40.tinypic.com/2a6wc8w.jpg)

To reset these buttons, simply click the Free/Clear button in the Move window as seen here:

(https://smf.probesoftware.com/oldpics/i44.tinypic.com/wqopdi.jpg)

and all will be ok.

For those who enjoy details, this button press is equivalent to deleting the process.dat file, which is used for sharing information between the different Probe Software applications.
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on October 03, 2013, 10:16:30 AM
Here's a useful tip that some might not be aware of...

Everyone knows that one can display the acquired analysis positions on analog signal images captured in Probe for EPMA using the Run | Display, Annotate and Export Analog Signal Images menu. And that one can also label the analysis positions with the sample number and analysis number or just the analysis number as shown here:

(https://smf.probesoftware.com/oldpics/i39.tinypic.com/9k5co8.jpg)

Note that the size of the circles depicting the analysis positions are drawn to show the beam size of the analysis points. In this case 5 um.

But did you also know that one can determine the distance from objects visible in the image by simply clicking and dragging the mouse on the image as seen here?

(https://smf.probesoftware.com/oldpics/i42.tinypic.com/9k2cgk.jpg)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on November 14, 2013, 06:29:43 PM
Here's a handy trick. 

If you only want to output a few selected samples- or even just one sample- using one of the output formats, for example the User Specified Format Output, simply select the sample (standard or unknowns) and right click the Analyze! sample list and you will be presented with this menu:

(https://smf.probesoftware.com/oldpics/i44.tinypic.com/r0zcw9.jpg)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on November 14, 2013, 06:36:17 PM
Here's another right click feature, but this time from the Automate! window.  Simply select the position sample or samples and right click the Automate! position list and you can perform a number of interesting functions.

For example, edit a position sample name!

(https://smf.probesoftware.com/oldpics/i44.tinypic.com/2qxxez4.jpg)

You can get similar functionality from the Position Database window:

(https://smf.probesoftware.com/oldpics/i41.tinypic.com/2evdfr7.jpg)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on March 05, 2014, 03:00:36 PM
This isn't so much a tip or trick post as it is an "under the hood" tutorial, so here goes.

If you've ever wanted more details about your quantitative analysis, the first thing to utilize is the List Report button in the Analyze! window, which nicely summarizies the standard intensity acquisition sets for your run. This is explained further in this post:

http://smf.probesoftware.com/index.php?topic=168.msg725#msg725

But for even more details, simply click the Output | Debug Mode menu in PFE and try some data or analysis functions. Here is an example of the Data button in "DebugMode". Most of the output is self explanatory I think, but with some explanation in red:

St  467 Set   2 Hornblende (Arenal) USNM 111356
(Magnification (analytical) =  20000),        Beam Mode = Analog  Spot
(Magnification (default) =     2524, Magnification (imaging) =    736)
Image Shift (X,Y):                                        -2.00,  3.00

Analysis (wet chemistry) by Gene Jarosewich
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 11/26/2013 03:43:20 PM to 11/26/2013 03:53:12 PM

Stage (or Beam Deflection) Coordinate Positions:
          X          Y          Z                 X          Y          Z
  136G   20889.52  -3242.255 .000000000   137G   20893.47  -3242.244 .000000000
  138G   20897.50  -3242.259 .000000000   139G   20901.50  -3242.245 .000000000
  140G   20905.54  -3242.253 .000000000

On and Off Peak Positions:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
ONPEAK 46267.0 81466.0 42614.0 32507.0 38401.0 48102.0 38423.0 61432.0 53911.0 68290.0 24051.0 71137.0
OFFSET 95.8477 -11.523 162.785 -41.074 98.1523 13.3867 -23.414 -16.410 139.859 1.39844 -79.539 177.828
HIPEAK    ----    ---- 43422.5    ----    ----    ----    ---- 61934.1 54623.5 68781.5 25462.6 72529.0
LOPEAK    ----    ---- 41935.1    ----    ----    ----    ---- 60684.5 53300.2 67865.3 23294.2 69800.0
HI-OFF    ----    ---- 808.500    ----    ----    ----    ---- 502.102 712.500 491.500 1411.60 1392.00
LO-OFF    ----    ---- -678.90    ----    ----    ----    ---- -747.50 -610.80 -424.70 -756.80 -1337.0

Multi-Point Background Positions and Parameters:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
MULHI:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULHI:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULHI:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULHI:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----

MHIOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MHIOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MHIOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MHIOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----

ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
MULLO:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULLO:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULLO:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULLO:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----

MLOOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MLOOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MLOOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MLOOFF    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----

ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
MACQHI    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MACQLO    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MUITHI    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MUITLO    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
MULFIT    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----

PHA Parameters:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
DEAD:     3.00    3.25    3.31    2.90    3.00    2.97    3.25    3.25    3.31    2.97    2.90    3.00
BASE:      .56     .50     .56     .56     .56     .56     .56     .50     .56     .56     .56     .56
WINDOW    4.00    4.00    4.00    4.00    4.00    4.00    4.00    4.00    4.00    4.00    4.00    4.00
MODE:       -1      -1      -1      -1      -1      -1      -1      -1      -1      -1      -1      -1
GAIN:    2321.    960.   1181.   2241.   2321.    600.    700.    960.    992.    700.   1471.   2321.
BIAS:    1300.   1330.   1850.   1293.   1300.   1840.   1330.   1330.   1850.   1840.   1293.   1320.

Last (Current) On and Off Peak Count Times:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
BGD:       MAN     MAN     OFF     MAN     MAN     MAN     MAN     OFF     OFF     OFF     OFF     OFF
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     EXP     LIN
BRAGG:       1       1       1       1       1       1       1       1       1       1       1       1
SPEC:        1       2       3       4       1       5       2       2       3       5       4       1
CRYST:     TAP    LPET    LPET     TAP     TAP     LIF    LPET    LPET    LPET     LIF     TAP     TAP
CRY2D: 25.7450  8.7500  8.7500 25.7450 25.7450  4.0267  8.7500  8.7500  8.7500  4.0267 25.7450 25.7450
CRYK : .002180 .000144 .000144 .002180 .002180 .000058 .000144 .000144 .000144 .000058 .002180 .002180
ORDER:       1       1       1       1       2       1       2       3       2       2       2       3
ONTIM:   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00
HITIM:    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
LOTIM:    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00

Miscellaneous Sample Acquisition/Calculation Parameters:
KILO:    15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00   15.00
ENERGY   1.041   1.740   3.313   1.487   1.254   6.400   3.691   2.308   2.622   4.509   2.013    .677
EDGE:    1.073   1.839   3.608   1.560   1.305   7.112   4.039   2.472   2.823   4.967   2.146    .687
Eo/Ec:   13.98    8.16    4.16    9.62   11.49    2.11    3.71    6.07    5.31    3.02    6.99   21.83        <- overvoltage
STDS:      336     162     374     160     162     162     162     730     285      22     285     284
INTE:        0       0       0       0       0       0       0       0       0       0       0       0        <- integrated intensity scan info
INTEIN     ---     ---     ---     ---     ---     ---     ---     ---     ---     ---     ---     ---
INTEMI     ---     ---     ---     ---     ---     ---     ---     ---     ---     ---     ---     ---

Combined Analytical Condition Arrays:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
TAKE:     40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0
KILO:     15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0
CURR:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    50.0    50.0    50.0    50.0    50.0
SIZE:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0

Specified (Fixed) Concentrations:
ELEM:        o       h
ELWT:     .000    .000

Faraday/Aperture Beam Currents:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G   9.994   9.994   9.994   9.994   9.994   9.994   9.994  49.994  49.994  49.994  49.994  49.994
  137G   9.988   9.988   9.988   9.988   9.988   9.988   9.988  49.983  49.983  49.983  49.983  49.983
  138G  10.011  10.011  10.011  10.011  10.011  10.011  10.011  49.975  49.975  49.975  49.975  49.975
  139G   9.999   9.999   9.999   9.999   9.999   9.999   9.999  49.989  49.989  49.989  49.989  49.989
  140G  10.005  10.005  10.005  10.005  10.005  10.005  10.005  50.002  50.002  50.002  50.002  50.002

AVER:    9.999   9.999   9.999   9.999   9.999   9.999   9.999  49.989  49.989  49.989  49.989  49.989
SDEV:     .009    .009    .009    .009    .009    .009    .009    .011    .011    .011    .011    .011

On-Peak (off-peak corrected) or MAN On-Peak X-ray Counts (cps/1nA) (and Faraday Current):
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
BGD:       MAN     MAN     OFF     MAN     MAN     MAN     MAN     OFF     OFF     OFF     OFF     OFF
SPEC:        1       2       3       4       1       5       2       2       3       5       4       1
CRYST:     TAP    LPET    LPET     TAP     TAP     LIF    LPET    LPET    LPET     LIF     TAP     TAP
CRY2D: 25.7450  8.7500  8.7500 25.7450 25.7450  4.0267  8.7500  8.7500  8.7500  4.0267 25.7450 25.7450
CRYK :  .00218  .00014  .00014  .00218  .00218  .00006  .00014  .00014  .00014  .00006  .00218  .00218        <- Bragg crystal refractive index
ORDER:       1       1       1       1       2       1       2       3       2       2       2       3
  136G    8.46  148.88    1.53   58.09   56.98   78.59   79.51    -.03    -.05    1.40    -.01    -.01
  137G    8.10  149.56    1.88   58.31   58.09   77.35   80.42     .00    -.03    1.40    -.04    -.03
  138G    8.18  149.22    1.51   58.47   57.96   78.06   80.08    -.01     .03    1.45     .00     .02
  139G    8.06  149.32    1.56   58.14   57.40   78.35   79.83     .00    -.09    1.43    -.05     .00
  140G    8.15  149.39    1.80   58.64   57.27   78.28   78.58     .00     .03    1.44     .00     .00

AVER:     8.19  149.27    1.66   58.33   57.54   78.13   79.68    -.01    -.02    1.42    -.02     .00
SDEV:      .16     .25     .17     .23     .47     .47     .70     .01     .05     .02     .02     .02
1SIG:      .17     .70     .16     .38     .44     .44     .63     .02     .03     .04     .02     .01
SIGR:      .96     .36    1.06     .60    1.08    1.07    1.11     .65    1.89     .51    1.07    1.52
SERR:      .07     .11     .08     .10     .21     .21     .31     .01     .02     .01     .01     .01
%RSD:     1.94     .17   10.47     .39     .82     .60     .88 -185.47 -231.91    1.57  -97.90-1552.33

Off-Peak (calculated) X-ray Counts (cps/1nA):
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
TYPE:     NONE    NONE  LINEAR    NONE    NONE    NONE    NONE  LINEAR  LINEAR  LINEAR EXPONEN  LINEAR        <- off peak correction type (none= MAN)
COEF1:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----  2.0000    ----
COEF2:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
COEF3:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
  136G    ----    ----    3.74    ----    ----    ----    ----     .57     .72     .50     .38     .13        <- these are the interpolated off-peak intensities for each data point
  137G    ----    ----    3.57    ----    ----    ----    ----     .50     .71     .48     .40     .14
  138G    ----    ----    3.79    ----    ----    ----    ----     .56     .68     .50     .36     .11
  139G    ----    ----    3.71    ----    ----    ----    ----     .52     .75     .46     .40     .12
  140G    ----    ----    3.60    ----    ----    ----    ----     .52     .67     .48     .38     .12

AVER:     ----    ----    3.68    ----    ----    ----    ----     .53     .71     .48     .38     .12
SDEV:     ----    ----     .09    ----    ----    ----    ----     .03     .03     .02     .02     .01
SERR:     ----    ----     .04    ----    ----    ----    ----     .01     .01     .01     .01     .00
%RSD:     ----    ----    2.47    ----    ----    ----    ----    5.82    4.47    3.72    3.95    8.00

Raw On-Peak X-ray Count Times:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka  Date and Time
  136G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00  11/26/2013 3:43:20 PM
  137G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00  11/26/2013 3:45:48 PM
  138G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00  11/26/2013 3:48:16 PM
  139G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00  11/26/2013 3:50:44 PM
  140G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00  11/26/2013 3:53:12 PM

AVER:    30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00  11/26/2013 3:48:16 PM

Actual Elapsed Acquisition Time (seconds) For On-Peak X-ray Counting:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00
  137G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00
  138G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   21.00   20.00
  139G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00
  140G   30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00

AVER:    30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.20   20.00

Raw On-Peak X-ray Counts (cps/1nA) (and Faraday Current):
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G    8.46  148.88    5.27   58.09   56.98   78.59   79.51     .54     .67    1.90     .37     .12    .000
  137G    8.10  149.56    5.46   58.31   58.09   77.35   80.42     .50     .68    1.88     .36     .11    .000
  138G    8.18  149.22    5.30   58.47   57.96   78.06   80.08     .55     .71    1.95     .36     .13    .000
  139G    8.06  149.32    5.26   58.14   57.40   78.35   79.83     .52     .67    1.89     .35     .13    .000
  140G    8.15  149.39    5.40   58.64   57.27   78.28   78.58     .52     .70    1.92     .37     .12    .000

AVER:     8.19  149.27    5.34   58.33   57.54   78.13   79.68     .53     .69    1.91     .36     .12
SDEV:      .16     .25     .09     .23     .47     .47     .70     .02     .02     .03     .01     .01                  <- calculated (measured) standard deviations
1SIG:      .17     .70     .16     .38     .44     .44     .63     .02     .03     .04     .02     .01                   <- predicted variance (one sigma)
SIGR:      .96     .36     .53     .60    1.08    1.07    1.11     .95     .74     .66     .51     .69                 sigma ratio (measured SD divided by predicted SD)
SERR:      .07     .11     .04     .10     .21     .21     .31     .01     .01     .01     .00     .00                   <- standard error (variance of the average)
%RSD:     1.94     .17    1.63     .39     .82     .60     .88    4.13    2.84    1.50    2.65    6.21            <- % relative standard deviation (SD divided by average times 100)

Raw Hi-Peak X-ray Count Times:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  137G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  138G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  139G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  140G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00

AVER:     ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00

Raw Hi-Peak X-ray Counts (cps/1nA):
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G    ----    ----    3.86    ----    ----    ----    ----     .56     .72     .54     .41     .14
  137G    ----    ----    3.70    ----    ----    ----    ----     .52     .70     .51     .40     .14
  138G    ----    ----    3.84    ----    ----    ----    ----     .55     .72     .52     .33     .11
  139G    ----    ----    3.74    ----    ----    ----    ----     .54     .75     .46     .42     .11
  140G    ----    ----    3.44    ----    ----    ----    ----     .49     .74     .50     .34     .11

AVER:     ----    ----    3.72    ----    ----    ----    ----     .53     .73     .51     .38     .12
SDEV:     ----    ----     .17    ----    ----    ----    ----     .03     .02     .03     .04     .02
1SIG:     ----    ----     .19    ----    ----    ----    ----     .05     .05     .04     .04     .02
SIGR:     ----    ----     .86    ----    ----    ----    ----     .56     .30     .64    1.09    1.12
SERR:     ----    ----     .07    ----    ----    ----    ----     .01     .01     .01     .02     .01
%RSD:     ----    ----    4.48    ----    ----    ----    ----    4.86    2.22    5.67   11.17   14.48

Raw Lo-Peak X-ray Count Times:
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  137G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  138G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  139G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00
  140G    ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00

AVER:     ----    ----   10.00    ----    ----    ----    ----    5.00    5.00    5.00    5.00   10.00

Raw Lo-Peak X-ray Counts (cps/1nA):
ELEM:    na ka   si ka    k ka   al ka   mg ka   fe ka   ca ka    s ka   cl ka   ti ka    p ka    f ka
  136G    ----    ----    3.64    ----    ----    ----    ----     .59     .72     .47     .37     .13
  137G    ----    ----    3.47    ----    ----    ----    ----     .47     .72     .45     .40     .13
  138G    ----    ----    3.74    ----    ----    ----    ----     .58     .65     .49     .39     .11
  139G    ----    ----    3.68    ----    ----    ----    ----     .48     .76     .46     .39     .14
  140G    ----    ----    3.74    ----    ----    ----    ----     .56     .62     .45     .40     .13

AVER:     ----    ----    3.65    ----    ----    ----    ----     .53     .69     .46     .39     .13
SDEV:     ----    ----     .11    ----    ----    ----    ----     .06     .06     .01     .02     .01
1SIG:     ----    ----     .19    ----    ----    ----    ----     .05     .05     .04     .04     .02
SIGR:     ----    ----     .58    ----    ----    ----    ----    1.29    1.08     .34     .38     .56
SERR:     ----    ----     .05    ----    ----    ----    ----     .03     .03     .01     .01     .00
%RSD:     ----    ----    3.06    ----    ----    ----    ----   11.14    8.20    3.18    3.88    6.99


If there is any output that is unclear please post your questions.
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on March 05, 2014, 03:31:32 PM
The Debug Mode output for quantitative analysis is more extensive than the raw data output. For example here is the same sample calculated with a matrix correction, but only the first data point for brevity:


MAN fit data and coefficients for na                       <- The MAN fits for each element are loaded first
Order 2, npts 5
StdAss:      730     162     285      14      22               <- these are the MAN standard assignments for this element
Z-bars:  20.6647 13.2274 14.4794 10.8047 16.3920         <- average Z (Z-bar) for each MAN standard
Counts:  1.13750 1.15515 1.19729 1.18332 1.04192         <- the on-peak counts when the element is not present
AbsCor:  2.62949 2.05361 2.06884 1.75421 2.60603        <- the continuum absorption correction
Counts:  2.99104 2.37223 2.47700 2.07580 2.71528         <- the absorption corrected continuum counts
Coeffs:  .168259 .219104 -.00398                                   <- the polynomial fit coefficients for each standard MAN fit

MAN fit data and coefficients for si
Order 2, npts 5
StdAss:      730     285      25      22      12
Z-bars:  20.6647 14.4794 21.1658 16.3920 10.4267
Counts:  4.22185 3.14173 3.92018 3.30528 1.68767
AbsCor:  1.31229 1.17433 1.47618 1.28689 1.57869
Counts:  5.54028 3.68941 5.78688 4.25354 2.66431
Coeffs:  .751678 .132178 .004916

MAN fit data and coefficients for al
Order 2, npts 6
StdAss:      730     285      25     273      14      12
Z-bars:  20.6647 14.4794 21.1658 10.5798 10.8047 10.4267
Counts:  2.11352 2.09359 1.73470 1.42870 1.97240 1.14463
AbsCor:  1.52248 1.31384 1.79283 1.61422 1.20535 1.95626
Counts:  3.21779 2.75064 3.11003 2.30623 2.37744 2.23919
Coeffs:  .147184 .264489 -.00576

MAN fit data and coefficients for mg
Order 2, npts 6
StdAss:      374     730      25     336      14      22
Z-bars:  11.9907 20.6647 21.1658 11.0372 10.8047 16.3920
Counts:  1.54308 1.56474 1.28124 1.37161 1.53475 1.39727
AbsCor:  1.44002 1.90232 2.36279 1.54794 1.38991 1.87119
Counts:  2.22206 2.97664 3.02730 2.12316 2.13316 2.61456
Coeffs:  1.12783 .093743 -.00020

MAN fit data and coefficients for fe
Order 2, npts 5
StdAss:      285     273      14      22      12
Z-bars:  14.4794 10.5798 10.8047 16.3920 10.4267
Counts:  2.73536 2.19860 2.30321 2.94939 2.26072
AbsCor:  1.02129 .997516 .998913 1.03724 .996548
Counts:  2.79360 2.19314 2.30071 3.05921 2.25292
Coeffs:  .704175 .149354 -.00035

MAN fit data and coefficients for ca
Order 2, npts 4
StdAss:      374     730      14      22
Z-bars:  11.9907 20.6647 10.8047 16.3920
Counts:  2.81666 4.98813 2.59977 4.14098
AbsCor:  1.07150 1.11001 1.04570 1.00488
Counts:  3.01805 5.53687 2.71858 4.16120
Coeffs:  1.06978 .085206 .006333

Sample Line Number:  136
Elements:
      na      si       k      al      mg      fe      ca       s      cl      ti       p       f
Element Standards:
     336     162     374     160     162     162     162     730     285      22     285     284                  <- primary standard assignments
Element Standard K-Factors:
   .0735   .2018   .1132   .0334   .0568   .0950   .1027   .5061   .0601   .5547   .1599   .0256
Element Standard Counts (MAN/Interference corrected):
   73.52  202.16  113.18   33.45   56.88   95.38  102.74  101.14   12.07  110.89   31.95    5.07      < MAN standards are background corrected here
Element Standard Percents:
  12.552  25.382  12.859   4.906   8.847  11.209  11.057  53.450   6.808  59.939  17.843   9.020


Elements:
      na      si       k      al      mg      fe      ca       s      cl      ti       p       f
MAN Assignments:
     730     730       0     730     374     285     374       0       0       0       0       0
     162     285       0     285     730     273     730       0       0       0       0       0
     285      25       0      25      25      14      14       0       0       0       0       0
      14      22       0     273     336      22      22       0       0       0       0       0
      22      12       0      14      14      12       0       0       0       0       0       0
       0       0       0      12      22       0       0       0       0       0       0       0
BackgroundTypes:
       1       1       0       1       1       1       1       0       0       0       0       0        <- background correction types (0=off-peak, 1=MAN, 2=Multi-point)
MAN Fit Orders:
       2       2       0       2       2       2       2       0       0       0       0       0        <- polynomial fit order (0 = constant, 1 = linear, 2 = 2nd order polynomial)
MAN Absorption Correction Flags:
      -1      -1       0      -1      -1      -1      -1       0       0       0       0       0
MAN Counts:
    1.14    4.22     .00    2.11    1.54    2.74    2.82     .00     .00     .00     .00     .00
    1.16    3.14     .00    2.09    1.56    2.20    4.99     .00     .00     .00     .00     .00
    1.20    3.92     .00    1.73    1.28    2.30    2.60     .00     .00     .00     .00     .00
    1.18    3.31     .00    1.43    1.37    2.95    4.14     .00     .00     .00     .00     .00
    1.04    1.69     .00    1.97    1.53    2.26     .00     .00     .00     .00     .00     .00
     .00     .00     .00    1.14    1.40     .00     .00     .00     .00     .00     .00     .00
MAN Fit Coefficients:
.168259 .751678 .000000 .147184 1.12783 .704175 1.06978 .000000 .000000 .000000 .000000 .000000
.219104 .132178 .000000 .264489 .093743 .149354 .085206 .000000 .000000 .000000 .000000 .000000
-.00398 .004916 .000000 -.00576 -.00020 -.00035 .006333 .000000 .000000 .000000 .000000 .000000

Entering AnalyzeWeightCorrect...
Elements:
      na      si       k      al      mg      fe      ca       s      cl      ti       p       f

Uncorrected Unknown Counts:
    8.46  148.88    1.53   58.09   56.98   78.59   79.51    -.03    -.05    1.40    -.01    -.01    <- raw unknown intensities
MAN Background Counts on Unknown (based on unknown Z-bar:  10.8)
    2.07    2.75     .00    2.33    2.12    2.28    2.73     .00     .00     .00     .00     .00           <- interpolated MAN for unk at specified z-bar (assumes quartz to begin)


Continuum Absorption Correction Factors on Unknown:
  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000     <- first iteration of unknown MAN background (no composition yet)

Absorption Correction Factors on Unknown:
  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000     <- matrix correction factors for unk (no composition yet)
Fluorescence Correction Factors on Unknown:
  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
Atomic Number Correction Factors on Unknown:
  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
ZAF Correction Factors on Unknown:
  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000

Disabled Quant Flag (zeroed intensity if set):
       0       0       0       0       0       0       0       0       0       0       0       0
Corrected Unknown Counts:
    6.39  146.12    1.53   55.75   54.86   76.31   76.79    -.03    -.05    1.40    -.01    -.01     <- first background corrected intensities (MAN and off-peak)

Convergence Difference Counts:
    6.39  146.12    1.53   55.75   54.86   76.31   76.79     .03     .05    1.40     .01     .01      <- matrix iteration residuals

Sum Area-Peak-Factors:
   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000
Time Dependent Intensity (TDI) Element Correction Percents:
     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00
Time Dependent Intensity (TDI) Element Correction Percent Relative Deviations:
      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0
MAN Absorption Correction Percents:
     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00
Nominal excess oxygen weight percent:  .5606766
Current oxygen weight percent:  .5606766

SAMPLE: 136, ITERATIONS: 3, Z-BAR: 12.71593

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs    <- first matrix correction iteration
   Na ka  1.9731   .9943  1.0287  2.0182  1.0188  1.0097   .4266  1.0730 13.9795 3405.27
   Si ka  1.3127   .9990  1.0113  1.3262  1.0244   .9873   .6899  1.8390  8.1566 1370.16
   K  ka  1.0526   .9763  1.0713  1.1009  1.1188   .9575   .9080  3.6080  4.1574 366.982
   Al ka  1.4094   .9894  1.0389  1.4488  1.0444   .9948   .6296  1.5600  9.6154 1718.94
   Mg ka  1.5401   .9923  1.0059  1.5373  1.0036  1.0023   .5626  1.3050 11.4943 2164.98
   Fe ka  1.0027  1.0000  1.1796  1.1828  1.2473   .9457   .9820  7.1120  2.1091 83.5558
   Ca ka  1.0336   .9946  1.0502  1.0797  1.1012   .9537   .9316  4.0390  3.7138 273.980
   S  ka  1.2129  1.0000  1.0234  1.2413  1.0513   .9735   .7677  2.4720  6.0680 984.820
   Cl ka  1.1369  1.0000  1.0717  1.2185  1.1078   .9675   .8282  2.8230  5.3135 702.601
   Ti ka  1.0253   .9901  1.1574  1.1749  1.2207   .9481   .9480  4.9670  3.0199 216.454
   P  ka  1.3373  1.0000  1.0478  1.4013  1.0691   .9801   .6867  2.1460  6.9897 1413.60
   F  ka  3.8664   .9977  1.0159  3.9187   .9932  1.0228   .1938   .6870 21.8341 8188.75

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL    <- matrix corrected concentrations (see CalcZAF board for more details)
   Na ka  .08695  .00639   1.290   1.739   1.193    .000   15.00
   Si ka  .72280  .14587  19.345  41.385  14.640    .000   15.00
   K  ka  .01354  .00153    .169    .203    .092    .000   15.00
   Al ka 1.66671  .05572   8.072  15.252   6.359    .000   15.00
   Mg ka  .96453  .05475   8.417  13.957   7.361    .000   15.00
   Fe ka  .80005  .07604   8.994  11.570   3.423    .000   15.00
   Ca ka  .74738  .07673   8.285  11.592   4.394    .000   15.00
   S  ka -.00034 -.00017   -.021   -.021   -.014    .000   15.00
   Cl ka -.00390 -.00023   -.029   -.029   -.017    .000   15.00
   Ti ka  .01263  .00701    .823   1.373    .365    .000   15.00
   P  ka -.00040 -.00006   -.009   -.021   -.006    .000   15.00
   F  ka -.00155 -.00004   -.016   -.016   -.017    .000   15.00
   O                        .561    .561    .745    .000
   H                        .191   1.707   4.028    .000
   Mn                       .116    .150    .045    .000
   O                      43.217   -----  57.412    .000
   TOTAL:                 99.404  99.404 100.000    .000

Entering AnalyzeWeightCorrect...
Elements:
      na      si       k      al      mg      fe      ca       s      cl      ti       p       f

Uncorrected Unknown Counts:
    8.46  148.88    1.53   58.09   56.98   78.59   79.51    -.03    -.05    1.40    -.01    -.01
MAN Background Counts on Unknown (based on unknown Z-bar:  12.71593)
    1.17    2.46     .00    1.83    1.49    2.54    3.07     .00     .00     .00     .00     .00     <- next iteration of MAN background (note different z-bar)


Continuum Absorption Correction Factors on Unknown:
  1.9731  1.3127  1.0526  1.4094  1.5401  1.0027  1.0336  1.2129  1.1369  1.0253  1.3373  3.8664     <- now we can calculate an actual continuum matrix correction

Absorption Correction Factors on Unknown:
  1.9731  1.3127  1.0526  1.4094  1.5401  1.0027  1.0336  1.2129  1.1369  1.0253  1.3373  3.8664
Fluorescence Correction Factors on Unknown:
   .9943   .9990   .9763   .9894   .9923  1.0000   .9946  1.0000  1.0000   .9901  1.0000   .9977
Atomic Number Correction Factors on Unknown:
  1.0287  1.0113  1.0713  1.0389  1.0059  1.1796  1.0502  1.0234  1.0717  1.1574  1.0478  1.0159
ZAF Correction Factors on Unknown:
  2.0182  1.3262  1.1009  1.4488  1.5373  1.1828  1.0797  1.2413  1.2185  1.1749  1.4013  3.9187

Disabled Quant Flag (zeroed intensity if set):
       0       0       0       0       0       0       0       0       0       0       0       0
Corrected Unknown Counts:
    7.29  146.42    1.53   56.26   55.49   76.05   76.44    -.03    -.05    1.40    -.01    -.01

Convergence Difference Counts:
     .90     .29     .00     .50     .63     .26     .35     .00     .00     .00     .00     .00

Sum Area-Peak-Factors:
   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000
Time Dependent Intensity (TDI) Element Correction Percents:
     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00
Time Dependent Intensity (TDI) Element Correction Percent Relative Deviations:
      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0
MAN Absorption Correction Percents:
  -49.32  -23.82     .00  -29.05  -35.07    -.27   -3.25     .00     .00     .00     .00     .00
Nominal excess oxygen weight percent:  .5606766
Current oxygen weight percent:  43.77725

SAMPLE: 136, ITERATIONS: 3, Z-BAR: 12.69512

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Na ka  1.9689   .9943  1.0288  2.0141  1.0191  1.0095   .4275  1.0730 13.9795 3414.58
   Si ka  1.3137   .9990  1.0114  1.3273  1.0246   .9871   .6893  1.8390  8.1566 1381.19
   K  ka  1.0526   .9766  1.0714  1.1013  1.1190   .9574   .9080  3.6080  4.1574 369.246
   Al ka  1.4105   .9895  1.0390  1.4501  1.0446   .9946   .6291  1.5600  9.6154 1732.03
   Mg ka  1.5407   .9923  1.0060  1.5380  1.0038  1.0022   .5624  1.3050 11.4943 2179.22
   Fe ka  1.0026  1.0000  1.1798  1.1828  1.2476   .9456   .9820  7.1120  2.1091 83.7876
   Ca ka  1.0336   .9947  1.0503  1.0799  1.1015   .9536   .9316  4.0390  3.7138 275.650
   S  ka  1.2130  1.0000  1.0235  1.2415  1.0515   .9734   .7676  2.4720  6.0680 990.989
   Cl ka  1.1370  1.0000  1.0718  1.2187  1.1080   .9674   .8281  2.8230  5.3135 706.981
   Ti ka  1.0252   .9902  1.1575  1.1749  1.2210   .9480   .9482  4.9670  3.0199 217.133
   P  ka  1.3375  1.0000  1.0479  1.4016  1.0693   .9800   .6866  2.1460  6.9897 1422.50
   F  ka  3.8607   .9977  1.0160  3.9133   .9935  1.0227   .1941   .6870 21.8341 8224.34

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL
   Na ka  .09918  .00729   1.468   1.979   1.349    .000   15.00
   Si ka  .72426  .14616  19.400  41.503  14.588    .000   15.00
   K  ka  .01354  .00153    .169    .203    .091    .000   15.00
   Al ka 1.68172  .05622   8.152  15.403   6.381    .000   15.00
   Mg ka  .97563  .05538   8.518  14.125   7.401    .000   15.00
   Fe ka  .79728  .07578   8.963  11.531   3.390    .000   15.00
   Ca ka  .74402  .07639   8.249  11.542   4.347    .000   15.00
   S  ka -.00034 -.00017   -.021   -.021   -.014    .000   15.00
   Cl ka -.00390 -.00023   -.029   -.029   -.017    .000   15.00
   Ti ka  .01263  .00701    .823   1.373    .363    .000   15.00
   P  ka -.00040 -.00006   -.009   -.021   -.006    .000   15.00
   F  ka -.00155 -.00004   -.016   -.016   -.017    .000   15.00
   O                        .561    .561    .740    .000
   H                        .191   1.707   4.002    .000
   Mn                       .116    .150    .045    .000
   O                      43.456   -----  57.360    .000
   TOTAL:                 99.991  99.991 100.000    .000

Entering AnalyzeWeightCorrect...
Elements:
      na      si       k      al      mg      fe      ca       s      cl      ti       p       f

Uncorrected Unknown Counts:
    8.46  148.88    1.53   58.09   56.98   78.59   79.51    -.03    -.05    1.40    -.01    -.01
MAN Background Counts on Unknown (based on unknown Z-bar:  12.69512)
    1.17    2.45     .00    1.83    1.48    2.54    3.07     .00     .00     .00     .00     .00


Continuum Absorption Correction Factors on Unknown:
  1.9689  1.3137  1.0526  1.4105  1.5407  1.0026  1.0336  1.2130  1.1370  1.0252  1.3375  3.8607

Absorption Correction Factors on Unknown:
  1.9689  1.3137  1.0526  1.4105  1.5407  1.0026  1.0336  1.2130  1.1370  1.0252  1.3375  3.8607
Fluorescence Correction Factors on Unknown:
   .9943   .9990   .9766   .9895   .9923  1.0000   .9947  1.0000  1.0000   .9902  1.0000   .9977
Atomic Number Correction Factors on Unknown:
  1.0288  1.0114  1.0714  1.0390  1.0060  1.1798  1.0503  1.0235  1.0718  1.1575  1.0479  1.0160
ZAF Correction Factors on Unknown:
  2.0141  1.3273  1.1013  1.4501  1.5380  1.1828  1.0799  1.2415  1.2187  1.1749  1.4016  3.9133

Disabled Quant Flag (zeroed intensity if set):
       0       0       0       0       0       0       0       0       0       0       0       0
Corrected Unknown Counts:
    7.29  146.42    1.53   56.26   55.49   76.05   76.45    -.03    -.05    1.40    -.01    -.01

Convergence Difference Counts:
     .00     .01     .00     .00     .00     .00     .01     .00     .00     .00     .00     .00

Sum Area-Peak-Factors:
   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000   .0000
Time Dependent Intensity (TDI) Element Correction Percents:
     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00
Time Dependent Intensity (TDI) Element Correction Percent Relative Deviations:
      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0      .0
MAN Absorption Correction Percents:
  -49.21  -23.88     .00  -29.10  -35.09    -.26   -3.25     .00     .00     .00     .00     .00
Nominal excess oxygen weight percent:  .5606766
Current oxygen weight percent:  44.01643

SAMPLE: 136, ITERATIONS: 3, Z-BAR: 12.69514

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Na ka  1.9690   .9943  1.0288  2.0141  1.0191  1.0095   .4275  1.0730 13.9795 3414.72
   Si ka  1.3137   .9990  1.0114  1.3273  1.0246   .9871   .6893  1.8390  8.1566 1381.23
   K  ka  1.0526   .9766  1.0714  1.1013  1.1190   .9574   .9080  3.6080  4.1574 369.260
   Al ka  1.4105   .9895  1.0390  1.4501  1.0446   .9946   .6291  1.5600  9.6154 1732.08
   Mg ka  1.5407   .9923  1.0060  1.5380  1.0038  1.0022   .5624  1.3050 11.4943 2179.29
   Fe ka  1.0026  1.0000  1.1798  1.1828  1.2476   .9456   .9820  7.1120  2.1091 83.7913
   Ca ka  1.0336   .9947  1.0503  1.0799  1.1015   .9536   .9316  4.0390  3.7138 275.660
   S  ka  1.2130  1.0000  1.0235  1.2415  1.0515   .9734   .7676  2.4720  6.0680 991.026
   Cl ka  1.1370  1.0000  1.0718  1.2187  1.1080   .9674   .8281  2.8230  5.3135 707.008
   Ti ka  1.0252   .9902  1.1575  1.1749  1.2210   .9480   .9482  4.9670  3.0199 217.143
   P  ka  1.3375  1.0000  1.0479  1.4016  1.0693   .9800   .6866  2.1460  6.9897 1422.56
   F  ka  3.8607   .9977  1.0160  3.9133   .9935  1.0227   .1941   .6870 21.8341 8224.67

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL
   Na ka  .09916  .00729   1.468   1.979   1.349    .000   15.00
   Si ka  .72429  .14617  19.401  41.505  14.588    .000   15.00
   K  ka  .01354  .00153    .169    .203    .091    .000   15.00
   Al ka 1.68181  .05622   8.152  15.404   6.381    .000   15.00
   Mg ka  .97566  .05538   8.518  14.125   7.401    .000   15.00
   Fe ka  .79731  .07578   8.964  11.532   3.390    .000   15.00
   Ca ka  .74407  .07639   8.249  11.543   4.347    .000   15.00
   S  ka -.00034 -.00017   -.021   -.021   -.014    .000   15.00
   Cl ka -.00390 -.00023   -.029   -.029   -.017    .000   15.00
   Ti ka  .01263  .00701    .823   1.373    .363    .000   15.00
   P  ka -.00040 -.00006   -.009   -.021   -.006    .000   15.00
   F  ka -.00155 -.00004   -.016   -.016   -.017    .000   15.00
   O                        .561    .561    .740    .000
   H                        .191   1.707   4.002    .000
   Mn                       .116    .150    .045    .000
   O                      43.457   -----  57.360    .000
   TOTAL:                 99.994  99.994 100.000    .000

St  467 Set   2 Hornblende (Arenal) USNM 111356

St  467 Set   2 Hornblende (Arenal) USNM 111356
(Magnification (analytical) =  20000),        Beam Mode = Analog  Spot
(Magnification (default) =     2524, Magnification (imaging) =    736)
Image Shift (X,Y):                                        -2.00,  3.00

Analysis (wet chemistry) by Gene Jarosewich
Number of Data Lines:   5             Number of 'Good' Data Lines:   1
First/Last Date-Time: 11/26/2013 03:43:20 PM to 11/26/2013 03:53:12 PM
WARNING- Using Exponential Off-Peak correction for p ka

Average Total Oxygen:       44.018     Average Total Weight%:   99.994
Average Calculated Oxygen:  43.457     Average Atomic Number:   12.695
Average Excess Oxygen:        .561     Average Atomic Weight:   21.117
Average ZAF Iteration:        3.00     Average Quant Iterate:     3.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction

Combined Analytical Condition Arrays:
ELEM:       Na      Si       K      Al      Mg      Fe      Ca       S      Cl      Ti       P       F
TAKE:     40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0
KILO:     15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0
CURR:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    50.0    50.0    50.0    50.0    50.0
SIZE:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0

St  467 Set   2 Hornblende (Arenal) USNM 111356, Results in Elemental Weight Percents

ELEM:       Na      Si       K      Al      Mg      Fe      Ca       S      Cl      Ti       P       F       O       H      Mn
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     EXP     LIN
TIME:    30.00   30.00   20.00   40.00   30.00   40.00   20.00   20.00   20.00   20.00   20.00   20.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99   49.99   49.99   49.99   49.99   49.99      <- note different beam current for different elements

ELEM:       Na      Si       K      Al      Mg      Fe      Ca       S      Cl      Ti       P       F       O       H      Mn   SUM 
   136   1.468  19.401    .169   8.152   8.518   8.964   8.249   -.021   -.029    .823   -.009   -.016  44.018    .191    .116  99.994

AVER:    1.468  19.401    .169   8.152   8.518   8.964   8.249   -.021   -.029    .823   -.009   -.016  44.018    .191    .116  99.994
SDEV:     .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000
%RSD:      .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00

PUBL:    1.417  19.380    .174   8.188   8.587   8.916   8.255    n.a.    n.a.    .845    n.a.    n.a.  44.070    .191    .116 100.139
%VAR:     3.60     .11   -3.02    -.44    -.81     .53    -.07     ---     ---   -2.59     ---     ---    -.12     .00     .00
DIFF:     .051    .021   -.005   -.036   -.069    .048   -.006     ---     ---   -.022     ---     ---   -.052    .000    .000
STDS:      336     162     374     160     162     162     162     730     285      22     285     284       0       0       0

STKF:    .0735   .2018   .1132   .0334   .0568   .0950   .1027   .5061   .0601   .5547   .1599   .0256   .0000   .0000   .0000
STCT:    73.52  202.16  113.18   33.45   56.88   95.38  102.74  101.14   12.07  110.89   31.95    5.07     .00     .00     .00

UNKF:    .0073   .1462   .0015   .0562   .0554   .0758   .0764  -.0002  -.0002   .0070  -.0001   .0000   .0000   .0000   .0000
UNCT:     7.29  146.42    1.53   56.26   55.49   76.05   76.45    -.03    -.05    1.40    -.01    -.01     .00     .00     .00
UNBG:     1.17    2.45    3.74    1.83    1.48    2.54    3.07     .57     .72     .50     .38     .13     .00     .00     .00

ZCOR:   2.0141  1.3273  1.1013  1.4501  1.5380  1.1828  1.0799  1.2415  1.2187  1.1749  1.4016  3.9133   .0000   .0000   .0000
KRAW:    .0992   .7243   .0135  1.6818   .9757   .7973   .7441  -.0003  -.0039   .0126  -.0004  -.0016   .0000   .0000   .0000
PKBG:     7.22   60.70    1.41   31.79   38.40   30.97   25.91     .94     .93    3.80     .97     .94     .00     .00     .00
INT%:     ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----

St  467 Set   2 Hornblende (Arenal) USNM 111356, Results in Oxide Weight Percents

ELEM:     Na2O    SiO2     K2O   Al2O3     MgO     FeO     CaO       S      Cl    TiO2    P2O5       F       O     H2O     MnO   SUM 
   136   1.979  41.505    .203  15.404  14.125  11.532  11.543   -.021   -.029   1.373   -.021   -.016    .561   1.707    .150  99.994

AVER:    1.979  41.505    .203  15.404  14.125  11.532  11.543   -.021   -.029   1.373   -.021   -.016    .561   1.707    .150  99.994
SDEV:     .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000    .000
%RSD:      .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00     .00

PUBL:    1.910  41.461    .210  15.471  14.240  11.470  11.550    n.a.    n.a.   1.410    n.a.    n.a.    .561   1.707    .150 100.139   <- "published" standard values
%VAR:     3.60     .11   -3.02    -.44    -.81     .53    -.07     ---     ---   -2.59     ---     ---     .00     .00     .00      <- % relative accuracy error
DIFF:     .069    .044   -.006   -.067   -.115    .061   -.008     ---     ---   -.037     ---     ---    .000    .000    .000    <-algebraic difference between average and published
STDS:      336     162     374     160     162     162     162     730     285      22     285     284       0       0       0     <- assigned primary standards
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on April 05, 2014, 12:52:24 PM
This post is part quant tip and part automation tip for those using interference and/or MAN background corrections with "Quick Standards" from the Automate! window...

The "quick standards" option in the Automate! window is really cool in that it tells the app to not acquire any elements in each standard that aren't assigned for use for the primary, interference or MAN assignments, unless the standard is not used in any assignments at all, in which case it acquires all elements currently being analyzed in the run on that standard, seen here:

(https://smf.probesoftware.com/oldpics/i62.tinypic.com/20htro6.jpg)

This allows for quick acquisition of standard intensities. There are several options for this feature that can be found in the Acquisition Options dialog from the Acquire! windows as seen here:

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/2uz8pvl.jpg)

However, a caveat: The "quick standard" option is best utilized *after* your first standardization!  Why?  Because unless the interferences and/or MAN background *assignments* are already complete, the "quick" standardization will skip the acquisition of those elements for the interference and/or MAN calibrations. Note in the above image, the (initial) standardization option is checked but not the quick stds option...

Once the standards are acquired *without* the quick stds option, since all elements are acquired on all standards, we can go through the standards looking for unsuspected interferences (can we measure zero with sufficient accuracy in the presence of element "X"?), and specify these spectral interferences from the Standard Assignments button in Analyze!. Also, the MAN background calibration curves can also be examined and any outliers due to interferences or contamination can be eliminated. See these two links for more details:

http://smf.probesoftware.com/index.php?topic=69.msg257#msg257
http://smf.probesoftware.com/index.php?topic=4.msg499#msg499

Now that all interferences and MAN assignments are complete, *now* we can utilize the "quick stds" option to quickly acquire only the elements we actually need for the primary standard, interferences and MAN calibration curves as seen here:

(https://smf.probesoftware.com/oldpics/i60.tinypic.com/sxbpxd.jpg)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on April 07, 2014, 03:12:34 PM
Here's another useful "hidden feature" that some of you might find useful.

When the Digitize window is open from the Automate! window as seen here, and the Standard option is selected:

(https://smf.probesoftware.com/oldpics/i61.tinypic.com/2hh1zpc.jpg)

we can select a standard.

From this window, if a BMP image exists in the StandardPOSFileDirectory as defined in the [standards] section of the probewin.ini file with the first 4 characters of the filename containing the standard number, the application will automatically open the image up for the user.  It could be a SE image of the standard grains with annotations or perhaps an EDS spectrum of the standard or whatever... as seen here:

(https://smf.probesoftware.com/oldpics/i59.tinypic.com/15yjbj5.jpg)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on April 09, 2014, 04:19:41 PM
I recently found this short note I made some time ago on using the Halogen Correction feature in Probe for EPMA. Please let me know if you have any questions. Bottom line: if you have significant weight percent levels of halogens and you are trying to calculate oxygen by stoichiometry (I'm lookin' at you- geologists!), you need this correction...

Oxygen From Halogens (F, Cl, Br and I) Correction

Introduction
A new feature to accurately calculate stoichiometric oxygen when halogens replace some of the oxygen is now available. This option will allow the program to calculate the equivalent oxygen from the measured or specified halogen concentrations (F, Cl, Br and I) and subtract that amount from the amount of calculated stoichiometric oxygen during the matrix ZAF iteration. Without this correction not only will the total be over estimated, but the matrix correction will be incorrectly calculated for the other elements in the sample. The largest error will be an overcorrection of F in samples containing significant F replacement of stoichiometric oxygen such as fluorine bearing phlogopites and apatites.

Calculation Details
During the calculation, since it requires two halogen atoms to replace one oxygen atom, one-half (by atom) of the halogens present are converted to equivalent oxygen and that amount is subtracted during the compositional iteration procedure. The adjustment is iterated along with the modified matrix correction factors, due to the change in overall composition. This option is applicable for ZAF/pr(z), Bence-Albee and calibration curve matrix correction calculations. This option applies only to samples where oxygen is calculated by stoichiometry and have measured or specified F, Cl, Br or I.

If this option is NOT used for samples where oxygen is calculated by stoichiometry and halogens are present, the software will simply report the oxygen equivalent of the halogens without subtracting the calculated amount. In this case, the user may then manually subtract the oxygen equivalent from the stoichiometric calculated oxygen, however, since the matrix correction is not adjusted for the change in oxygen concentration, the calculation of the other elements (especially F, due to it's large correction factor in the presence of oxygen) will be slightly in error.

Finally it should be noted that to be internally consistent in the matrix calculations, all oxide standard compositions used in halogen analyses should reflect the same adjustment for equivalent oxygen in the standard database as is used for the unknown (or standard) analysis in Probe for Windows.

Example
For example, the following standard composition is entered with the assumption that all cations have a full complement of stoichiometric oxygen:

St  112 biotite #3
TakeOff = 40  KiloVolts = 15
Oxide and Elemental Composition

Average Total Oxygen:       40.474     Average Total Weight%:  101.488
Average Calculated Oxygen:  40.474     Average Atomic Number:   13.413
Average Excess Oxygen:        .000     Average Atomic Weight:   21.358
Oxygen Equiv. from Halogen:  1.697

ELEM:     SiO2   Al2O3     FeO     MgO     CaO    Na2O     K2O    TiO2
XRAY:      ka      ka      ka      ka      ka      ka      ka      ka
OXWT:   38.622  10.721  18.131  14.011    .020    .690   9.210   2.290
ELWT:   18.053   5.674  14.093   8.449    .014    .512   7.646   1.373
KFAC:    .1368   .0382   .1205   .0528   .0001   .0024   .0689   .0119
ZCOR:   1.3201  1.4841  1.1692  1.6008  1.0860  2.1594  1.1093  1.1506
ATWT:   13.527   4.426   5.311   7.316    .007    .469   4.115    .603

ELEM:      MnO     BaO    Rb2O      Cl       F     H2O       O
XRAY:      ka      la      la      ka      ka              ka
OXWT:     .950    .111    .030    .020   4.020   2.663    .000
ELWT:     .736    .099    .027    .020   4.020    .298  40.474
KFAC:    .0062   .0008   .0002   .0002   .0112   .0030   .1826
ZCOR:   1.1891  1.3161  1.4008  1.2064  3.6053   .0000  2.2167
ATWT:     .282    .015    .007    .012   4.453   6.222  53.236

Note that the total for the above composition is actually greater than 100% due to the fact that in reality the fluorine and chlorine actually replace some of the cation oxygen in this mineral.  Note also, the oxygen equivalent from all halogens (F, Cl, Br and I) is reported, but not subtracted from the stoichiometric oxygen (oxygen from cations).

Calculations using this standard composition and an adjustment for equivalent oxygen from halogens in the matrix correction procedure will be slightly in error due to the fact that the standard k-factor calculation will not reflect the proper reduction of stoichiometric oxygen due to the presence of halogens.

Since the default mode of this analysis option (unchecked) is to only display the equivalent oxygen and not actually utilize it in the matrix corrections, then results calculated using typical standard compositions will at least be internally consistent.

However, if it is desired to use this analysis option by reducing the calculated stoichiometric oxygen in the matrix correction then for internally consistent results, the user should make an adjustment (reduction) in the amount of stoichiometric oxygen in the standard composition. This is easily done by noting the actual amount of stoichiometric oxygen (adjusted) in the Standard Composition dialog (see menu Standard | Modify) and entering that value for the concentration of oxygen as seen here:

St  112 biotite #3
TakeOff = 40  KiloVolts = 15
Oxide and Elemental Composition

Average Total Oxygen:       38.777     Average Total Weight%:   99.791
Average Calculated Oxygen:  40.474     Average Atomic Number:   13.505
Average Excess Oxygen:      -1.697     Average Atomic Weight:   21.480
Oxygen Equiv. from Halogen:  1.697

ELEM:     SiO2   Al2O3     FeO     MgO     CaO    Na2O     K2O    TiO2
XRAY:      ka      ka      ka      ka      ka      ka      ka      ka
OXWT:   38.622  10.721  18.131  14.011    .020    .690   9.210   2.290
ELWT:   18.053   5.674  14.093   8.449    .014    .512   7.646   1.373
KFAC:    .1367   .0382   .1207   .0529   .0001   .0024   .0689   .0119
ZCOR:   1.3208  1.4841  1.1681  1.5982  1.0858  2.1546  1.1091  1.1499
ATWT:   13.836   4.527   5.432   7.483    .008    .479   4.209    .617

ELEM:      MnO     BaO    Rb2O      Cl       F     H2O       O
XRAY:      ka      la      la      ka      ka              ka
OXWT:     .950    .111    .030    .020   4.020   2.663  -1.697       <-- this is correct! (think about it)
ELWT:     .736    .099    .027    .020   4.020    .298  38.777
KFAC:    .0062   .0008   .0002   .0002   .0113   .0030   .1731
ZCOR:   1.1881  1.3153  1.4016  1.2073  3.5626   .0000  2.2398
ATWT:     .288    .016    .007    .012   4.555   6.364  52.168

Magnitude of the Effect
Note that the matrix correction for F ka changes from 3.6053 in the first example where the excess oxygen has not be subtracted, to 3.5626 in the second example where the oxygen was subtracted during the ZAF calculation. This is a change of about 1.1% in the calculated concentration for an unknown of similar composition, but will be significantly larger in samples with higher concentrations of F.

Note that if excess oxygen from Fe is also present and reported, then that concentration needs to be added to the actual oxygen concentration after subtraction of the oxygen equivalent from the halogens.
Title: Re: Tips and Tricks for PFE quant
Post by: Anette von der Handt on February 05, 2016, 09:52:17 AM
Hi,

I thought I share this little trick I just realized and maybe others would find it useful (as it is rooted in old Jeol software routines of mine).

At times I would like to run varying number of points on each standard but still do an automated calibration in PFE. For example the first point on albite is almost always a throwaway (from the peaking) or some standards are difficult to polish and require more points but I don't want to spend the time and run the same number of points on well-behaving standards.

In the automation dialog, I can only define a single number for standard points to acquire which in most cases is the most efficient. If not enough locations are digitized, the program will increment as needed (which is great if you have the type of vast, nicely polished standard and not small crappy ones).

So how can I have my cake and eat it too (automated acquisition with variable number of points).

I force PFE to only run digitized positions (in the "Acquisitions options" dialog in "Acquire!" and set positions as needed on my standards
Then I enter the maximum number in the Automate! dialog.

That way I can have, for example, 15 points on my BN standard and only 5 on my forsterite all in one automated run.
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on July 11, 2016, 01:11:37 PM
If you want to have Probe for EPMA play a little tune whenever your automation finishes (a feature John Fournelle asked for many moons ago!), you simply need to edit the [general] section in your Probewin.ini file for the following keyword:

UseWavFileAfterAutomationString="blowthiswhistle.wav"

Basically, this parameter specifies a .WAV audio file to be played after an automation has been completed. If the .WAV file is located in the Probe for EPMA application folder or a folder in the system path then the filename only can be specified. If the file is located in another folder, the complete path must be designated.

Attached below are a number of "cute" WAV files that play a little tune after the PFE automation is complete.
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on October 27, 2016, 04:37:14 PM
Not sure if this really qualifies as a "trick" but I think it is worth examining a particularly nasty binary system and that is Si Ka in Hf.

I was running some trace zircon analyses and normally I don't measure Si (or Zr) because for trace analysis I usually just specify the ZrSiO4 formula by difference in the Calculation Options dialog for a complete matrix correction.  But this time I did and when I analyzed my Hf standard for Si, I got some strange analyses.

I should say that this isn't the first time I've seen this as shown by the post from a couple of years ago:

http://smf.probesoftware.com/index.php?topic=158.msg815#msg815

but this time I will follow up further on the quant question. By the way, I should also note that if I analyze the Hf in the Hf standard (HfSiO4 from John Hanchar) using pure Hf metal (using the Hf La line, so very energetic), I get almost exactly the expected Hf content in HfSiO4, so I'm pretty sure it's HfSiO4 (not sure if it could be anything else given only Hf, Si and O).

Anyway, here is the analysis of HfSiO4 using HfSiO4 as the Hf standard and ZrSiO4 as the Si standard:

ELEM:       Zr      Hf      Si       O
TYPE:     ANAL    ANAL    ANAL    SPEC
BGDS:      LIN     EXP     LIN
TIME:    60.00   60.00   60.00     ---
BEAM:    29.89   29.89   29.89     ---

ELEM:       Zr      Hf      Si       O   SUM 
  1533    .021  66.797  15.337  23.653 105.809
  1534   -.014  66.405  14.935  23.653 104.979
  1535    .028  66.587  15.288  23.653 105.556

AVER:     .012  66.596  15.187  23.653 105.448
SDEV:     .023    .196    .219    .000    .426
SERR:     .013    .113    .127    .000
%RSD:   196.68     .29    1.44     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.95)   46.31     .00
DIFF:      ---   (.63)   4.807    .000
STDS:      257      19     257     ---

STKF:    .4109   .5749   .1274     ---
STCT:   4215.7 14642.2   792.6     ---

UNKF:    .0001   .5750   .0555     ---
UNCT:       .6 14643.7   345.3     ---
UNBG:      9.4   245.2     3.4     ---

ZCOR:   2.0927  1.1582  2.7362     ---
KRAW:    .0001  1.0001   .4357     ---
PKBG:     1.07   60.76  102.80     ---

I think we can all agree that a 46% relative error on a 10% value isn't very good!  So then I ran all 10 matrix corrections in PFE and they all fail pretty miserably:

Summary of All Calculated (averaged) Matrix Corrections:
St   19 Set   6 HfSiO4 (Hafnon)
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

Elemental Weight Percents:
ELEM:       Zr      Hf      Si       O   TOTAL
     1    .012  66.596  15.187  23.653 105.448   Armstrong/Love Scott (default)
     2    .010  66.525  13.361  23.653 103.549   Conventional Philibert/Duncumb-Reed
     3    .010  66.337  13.382  23.653 103.383   Heinrich/Duncumb-Reed
     4    .011  66.464  13.954  23.653 104.083   Love-Scott I
     5    .011  66.477  14.110  23.653 104.251   Love-Scott II
     6    .010  66.482  13.564  23.653 103.709   Packwood Phi(pz) (EPQ-91)
     7    .011  66.193  15.002  23.653 104.861   Bastin (original) Phi(pz)
     8    .011  66.595  14.639  23.653 104.898   Bastin PROZA Phi(pz) (EPQ-91)
     9    .011  66.492  13.905  23.653 104.061   Pouchou and Pichoir-Full (Original)
    10    .010  66.446  13.630  23.653 103.740   Pouchou and Pichoir-Simplified (XPP)

AVER:     .011  66.461  14.073  23.653 104.198
SDEV:     .000    .120    .659    .000    .672
SERR:     .000    .038    .208    .000

MIN:      .010  66.193  13.361  23.653 103.383
MAX:      .012  66.596  15.187  23.653 105.448

The Si concentrations range from 13.3 wt% to 15.1 wt%, but all are pretty far from the expected 10.38 wt% Si.  So what is going on?

Well obviously there is an enormous atomic number correction for this system, and that is the main reason why there is so much variation in the different matrix corrections for Si Ka. Remember, all these matrix corrections are using the same MAC for Si Ka in Hf. 

But there is also a very large absorption correction, as seen from a formula calculation in CalcZAF:

ELEMENT  ABSCOR  FLUCOR  ZEDCOR  ZAFCOR STP-POW BKS-COR   F(x)u      Ec   Eo/Ec    MACs
   Hf la   .9854   .9999  1.2376  1.2194  1.3252   .9339   .9760  9.5610  1.5689 122.199
   Si ka  2.3552  1.0000   .8271  1.9481   .6972  1.1864   .3845  1.8390  8.1566 3875.50
   O  ka  3.7987   .9998   .7433  2.8232   .6220  1.1950   .1845   .5317 28.2114 7904.62

ELEMENT   K-RAW K-VALUE ELEMWT% OXIDWT% ATOMIC% FORMULA KILOVOL                                       
   Hf la  .00000  .54099  65.967   -----  16.667    .500   15.00                                       
   Si ka  .00000  .05328  10.380   -----  16.667    .500   15.00                                       
   O  ka  .00000  .08378  23.653   -----  66.667   2.000   15.00                                       
   TOTAL:                100.000   ----- 100.000   3.000

and in fact if we examine the different available MACs for Si Ka in Hf we can see there is a large range:

MAC value for Si Ka in Hf =    5449.15  (LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV)
MAC value for Si Ka in Hf =    5151.30  (CITZMU   Heinrich (1966) and Henke and Ebisu (1974))
MAC value for Si Ka in Hf =    5635.09  (MCMASTER McMaster (LLL, 1969) (modified by Rivers))
MAC value for Si Ka in Hf =    5037.41  (MAC30    Heinrich (Fit to Goldstein tables, 1987))
MAC value for Si Ka in Hf =    5152.54  (MACJTA   Armstrong (FRAME equations, 1992))
MAC value for Si Ka in Hf =    4926.87  (FFAST    Chantler (NIST v 2.1, 2005))
MAC value for Si Ka in Hf =    5061.00  (USERMAC  User Defined MAC Table)

in fact, the Henke value is the 2nd highest available. What if we utilize the FFAST value?

Summary of All Calculated (averaged) Matrix Corrections:
St   19 Set   6 HfSiO4 (Hafnon)
FFAST    Chantler (NIST v 2.1, 2005)

Elemental Weight Percents:
ELEM:       Zr      Hf      Si       O   TOTAL
     1    .011  66.523  14.493  23.653 104.680   Armstrong/Love Scott (default)
     2    .010  66.431  12.831  23.653 102.925   Conventional Philibert/Duncumb-Reed
     3    .010  66.282  12.858  23.653 102.803   Heinrich/Duncumb-Reed
     4    .010  66.387  13.326  23.653 103.377   Love-Scott I
     5    .010  66.399  13.447  23.653 103.509   Love-Scott II
     6    .010  66.388  12.922  23.653 102.972   Packwood Phi(pz) (EPQ-91)
     7    .011  66.173  14.335  23.653 104.172   Bastin (original) Phi(pz)
     8    .011  66.514  13.990  23.653 104.168   Bastin PROZA Phi(pz) (EPQ-91)
     9    .010  66.417  13.321  23.653 103.402   Pouchou and Pichoir-Full (Original)
    10    .010  66.372  13.049  23.653 103.084   Pouchou and Pichoir-Simplified (XPP)

AVER:     .010  66.389  13.457  23.653 103.509
SDEV:     .000    .102    .612    .000    .631
SERR:     .000    .032    .193    .000

MIN:      .010  66.173  12.831  23.653 102.803
MAX:      .011  66.523  14.493  23.653 104.680

Better, but still pretty high compared to the expected 10.38 wt%.  What if we try the fast Monte Carlo method?

ELEM:       Zr      Hf      Si       O   SUM 
  1533    .019  66.368  12.375  23.653 102.415
  1534   -.013  65.993  12.043  23.653 101.677
  1535    .024  66.161  12.336  23.653 102.175

AVER:     .010  66.174  12.251  23.653 102.089
SDEV:     .020    .188    .181    .000    .377
SERR:     .012    .109    .105    .000
%RSD:   196.62     .28    1.48     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.31)   18.03     .00
DIFF:      ---   (.21)   1.871    .000
STDS:      257      19     257     ---

STBE:   1.2931  1.1413  1.2894     ---
STCT:   4215.7 14642.2   792.6     ---

UNBE:   1.9602  1.1448  2.3660     ---
UNCT:       .6 14643.7   345.3     ---
UNBG:      9.4   245.2     3.4     ---
KRAW:    .0001  1.0001   .4357     ---
PKBG:     1.07   60.76  102.80     ---

So, it's better than the best matrix correction with the FFAST MAC but still off by some 18% relative.

So now let's pull out the "big gun", which is an empirical MAC I measured for Si Ka in Hf some years ago (3.4770e+03) using Pouchou's XMAC app and a number of measurements at multiple keVs, and see what we get:

ELEM:       Zr      Hf      Si       O   SUM 
  1533    .020  66.308  11.493  23.653 101.474
  1534   -.014  65.925  11.185  23.653 100.750
  1535    .026  66.101  11.457  23.653 101.237

AVER:     .011  66.111  11.378  23.653 101.154
SDEV:     .022    .191    .169    .000    .369
SERR:     .012    .111    .097    .000
%RSD:   196.65     .29    1.48     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.22)    9.62     .00
DIFF:      ---   (.14)    .998    .000
STDS:      257      19     257     ---

STKF:    .4045   .5730   .1304     ---
STCT:   4215.7 14642.2   792.6     ---

UNKF:    .0001   .5730   .0568     ---
UNCT:       .6 14643.7   345.3     ---
UNBG:      9.4   245.2     3.4     ---

ZCOR:   2.0110  1.1537  2.0020     ---
KRAW:    .0001  1.0001   .4357     ---
PKBG:     1.07   60.76  102.80     ---

So we're still off by some 9.6% relative, but that's a heck of a lot better than an error of 46% relative!

And the beat goes on... :D
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on October 28, 2016, 11:08:44 AM
Someone asked about the possibility of an interference of Si Ka by the Hf Ll IV line and that does show as an interference as seen here:

(https://smf.probesoftware.com/gallery/1_28_10_16_10_59_34.png)

However, when I analyzed Si in Hf metal I get essentially zero Si, so that is apparently not an issue:

ELEM:       Zr      Hf      Si   SUM 
  1539   3.090  98.388   -.008 101.470
  1540   3.065  98.300    .024 101.389
  1541   3.092  98.362    .008 101.462

AVER:    3.082  98.350    .008 101.440
SDEV:     .015    .045    .016    .045
SERR:     .009    .026    .009
%RSD:      .49     .05  197.86

PUBL:    3.000  97.000    n.a. 100.000
%VAR:     2.74    1.39     ---
DIFF:     .082   1.350     ---
STDS:      257      19     257


Note that the Hf concentration is calculated from extrapolation from HfSiO4 (KRAW = 1.709).
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on October 31, 2016, 11:01:16 AM
Quote from: Probeman on October 27, 2016, 04:37:14 PM
So, it's better than the best matrix correction with the FFAST MAC but still off by some 18% relative.

So now let's pull out the "big gun", which is an empirical MAC I measured for Si Ka in Hf some years ago (3.4770e+03) using Pouchou's XMAC app and a number of measurements at multiple keVs, and see what we get:

ELEM:       Zr      Hf      Si       O   SUM 
  1533    .020  66.308  11.493  23.653 101.474
  1534   -.014  65.925  11.185  23.653 100.750
  1535    .026  66.101  11.457  23.653 101.237

AVER:     .011  66.111  11.378  23.653 101.154
SDEV:     .022    .191    .169    .000    .369
SERR:     .012    .111    .097    .000
%RSD:   196.65     .29    1.48     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.22)    9.62     .00
DIFF:      ---   (.14)    .998    .000
STDS:      257      19     257     ---

STKF:    .4045   .5730   .1304     ---
STCT:   4215.7 14642.2   792.6     ---

UNKF:    .0001   .5730   .0568     ---
UNCT:       .6 14643.7   345.3     ---
UNBG:      9.4   245.2     3.4     ---

ZCOR:   2.0110  1.1537  2.0020     ---
KRAW:    .0001  1.0001   .4357     ---
PKBG:     1.07   60.76  102.80     ---

So we're still off by some 9.6% relative, but that's a heck of a lot better than an error of 46% relative!

And the beat goes on... :D

OK, so I decided this morning to recalculate all the matrix corrections using my empirically measured MAC from a number of years ago (as in the above output), but when I went to recalculate the value, I am now getting a slightly different number and I can't figure out why:

ELEM:       Zr      Hf      Si       O   SUM 
  1533    .021  66.261  11.165  23.653 101.100
  1534   -.014  65.880  10.866  23.653 100.384
  1535    .028  66.053  11.131  23.653 100.865

AVER:     .012  66.065  11.054  23.653 100.783
SDEV:     .023    .191    .164    .000    .365
SERR:     .013    .110    .095    .000
%RSD:   196.68     .29    1.48     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.15)    6.49     .00
DIFF:      ---   (.10)    .674    .000
STDS:      257      19     257     ---

STKF:    .4109   .5749   .1274     ---
STCT:   4215.7 14642.2   792.6     ---

UNKF:    .0001   .5750   .0555     ---
UNCT:       .6 14643.7   345.3     ---
UNBG:      9.4   245.2     3.4     ---

ZCOR:   2.0885  1.1489  1.9915     ---
KRAW:    .0001  1.0001   .4357     ---
PKBG:     1.07   60.76  102.80     ---

The std counts, unk counts and peak to bgd values are the same as before, so I know it's the same sample, but until I get back home (where I did the previous calculations), I probably won't be able to tell what was configured differently for the matrix correction.  Don't you just love analytical mysteries?  ;D

As chance would have it, the default "Armstrong" correction gives the worst result!  Anyway here are all 10 matrix corrections in PFE, run this time with the empirical MAC for Si Ka in Hf:

Summary of All Calculated (averaged) Matrix Corrections:
St   19 Set   6 HfSiO4 (Hafnon)

Elemental Weight Percents:
ELEM:       Zr      Hf      Si       O   TOTAL
     1    .012  66.065  11.054  23.653 100.783   Armstrong/Love Scott (default)
     2    .010  65.906  10.005  23.653  99.574   Conventional Philibert/Duncumb-Reed
     3    .010  65.932  10.055  23.653  99.651   Heinrich/Duncumb-Reed
     4    .011  65.948  10.209  23.653  99.821   Love-Scott I
     5    .011  65.954  10.255  23.653  99.873   Love-Scott II
     6    .010  65.887   9.869  23.653  99.420   Packwood Phi(pz) (EPQ-91)
     7    .011  66.002  10.961  23.653 100.628   Bastin (original) Phi(pz)
     8    .011  66.017  10.659  23.653 100.340   Bastin PROZA Phi(pz) (EPQ-91)
     9    .011  65.964  10.293  23.653  99.920   Pouchou and Pichoir-Full (Original)
    10    .010  65.933  10.086  23.653  99.682   Pouchou and Pichoir-Simplified (XPP)

AVER:     .011  65.961  10.345  23.653  99.969
SDEV:     .000    .054    .409    .000    .461
SERR:     .000    .017    .129    .000

MIN:      .010  65.887   9.869  23.653  99.420
MAX:      .012  66.065  11.054  23.653 100.783

So the "published" value (based on stoichiometry) for Si in HfSiO4 is 10.38 wt%, and the average of all 10 matrix corrections is 10.345 +/- 0.409 wt.%, so within the accuracy variance.
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on November 03, 2016, 09:03:22 AM
So I investigated further the previously mentioned issue where I got different relative errors on the Si Ka in HfSiO4 when using the empirically measured MAC for Si ka in Hf and found the reason. Unfortunately I do understand the physics of the reason. I even ran this by Paul Carpenter earlier this week, but he was stumped as well. Maybe some of you can enlighten us on what exactly is going on here, because it sure seems unintuitive.  But that's physics for you!

Ok, I made a new short run of ZrSiO4 as the Si standard and HfSiO4 as the Hf standard (oxygen by specification), so let's start by comparing the analysis of Si Ka in HfSiO4 using Hf La and 20 keV beam (just to make things difficult). Here is the analysis of HfSiO4 using the default Henke MACs (without the empirically measured MAC for Si Ka in Hf):

ELEM:       Zr      Hf      Si       O   SUM 
   101    .016  66.589  15.174  23.653 105.431
   102    .038  66.616  15.214  23.653 105.522
   103    .049  66.556  15.096  23.653 105.354

AVER:     .034  66.587  15.161  23.653 105.436
SDEV:     .017    .030    .060    .000    .084
SERR:     .010    .017    .035    .000
%RSD:    49.46     .04     .40     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.94)   46.06     .00
DIFF:      ---   (.62)   4.781    .000
STDS:      257      19     257     ---

STKF:    .4109   .5749   .1274     ---
STCT:   4248.7 14759.3   787.7     ---

UNKF:    .0002   .5749   .0554     ---
UNCT:      1.7 14759.3   342.6     ---
UNBG:      9.1   243.1     3.8     ---

ZCOR:   2.0923  1.1581  2.7362     ---
KRAW:    .0004  1.0000   .4350     ---
PKBG:     1.19   61.73   91.83     ---

Yes, nasty. And remember, the default Armstrong phi-rho-z gave the *worst* correction of all 10 matrix corrections in PFE, but don't worry about that for now.

And here for the record are the Henke MACs that were utilized:

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Zr      la      Zr  7.7749e+02
      Zr      la      Hf  3.6888e+03
      Zr      la      Si  2.6349e+03
      Zr      la      Co  1.6648e+03
      Zr      la      O   6.6065e+02
      Hf      la      Zr  1.3762e+02
      Hf      la      Hf  1.7099e+02
      Hf      la      Si  6.3939e+01
      Hf      la      Co  3.3125e+02
      Hf      la      O   1.1692e+01
      Si      ka      Zr  1.1459e+03
      Si      ka      Hf  5.4492e+03
      Si      ka      Si  3.5048e+02
      Si      ka      Co  2.5192e+03
      Si      ka      O   1.0337e+03

The ones in red are the MACs that matter for measuring Si Ka in HfSiO4.  Now the same thing but using the FFAST MACs from NIST:

ELEM:       Zr      Hf      Si       O   SUM 
   101    .015  66.515  14.480  23.653 104.664
   102    .036  66.543  14.519  23.653 104.752
   103    .046  66.483  14.406  23.653 104.589

AVER:     .033  66.514  14.469  23.653 104.668
SDEV:     .016    .030    .058    .000    .082
SERR:     .009    .017    .033    .000
%RSD:    49.46     .04     .40     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.83)   39.39     .00
DIFF:      ---   (.55)   4.088    .000
STDS:      257      19     257     ---

STKF:    .4045   .5730   .1304     ---
STCT:   4248.7 14759.3   787.7     ---

UNKF:    .0002   .5730   .0567     ---
UNCT:      1.7 14759.3   342.6     ---
UNBG:      9.1   243.1     3.8     ---

ZCOR:   2.0185  1.1608  2.5500     ---
KRAW:    .0004  1.0000   .4350     ---
PKBG:     1.19   61.73   91.83     ---

Better, but still pretty bad. And here are the FFAST MACs:

Current Mass Absorption Coefficients From:
FFAST    Chantler (NIST v 2.1, 2005)

  Z-LINE   X-RAY Z-ABSOR     MAC
      Zr      la      Zr  6.9520e+02
      Zr      la      Hf  3.3049e+03
      Zr      la      Si  2.6600e+03
      Zr      la      Co  1.5860e+03
      Zr      la      O   6.2295e+02
      Hf      la      Zr  1.3390e+02
      Hf      la      Hf  1.5115e+02
      Hf      la      Si  6.4790e+01
      Hf      la      Co  3.3857e+02
      Hf      la      O   1.1053e+01
      Si      ka      Zr  1.0291e+03
      Si      ka      Hf  4.9269e+03
      Si      ka      Si  3.2280e+02
      Si      ka      Co  2.4047e+03
      Si      ka      O   9.6997e+02

So far so good as this makes sense to me because the FFAST MACs for Si ka in Hf (and O) are both lower than the Henke MACs, so we expect the Si concentration to be lower, correct?
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on November 03, 2016, 09:12:10 AM
Now, let try the same thing, but this time we'll use the empirically measured MAC for Si Ka in Hf, and the other MACs from the Henke or FFAST look up tables.

So here is the analysis using Henke MACs:

ELEM:       Zr      Hf      Si       O   SUM 
   101    .016  66.057  11.044  23.653 100.770
   102    .038  66.083  11.075  23.653 100.850
   103    .049  66.027  10.986  23.653 100.715

AVER:     .034  66.056  11.035  23.653 100.778
SDEV:     .017    .028    .045    .000    .068
SERR:     .010    .016    .026    .000
%RSD:    49.46     .04     .41     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.14)    6.31     .00
DIFF:      ---   (.09)    .655    .000
STDS:      257      19     257     ---

STKF:    .4109   .5749   .1274     ---
STCT:   4248.7 14759.3   787.7     ---

UNKF:    .0002   .5749   .0554     ---
UNCT:      1.7 14759.3   342.6     ---
UNBG:      9.1   243.1     3.8     ---

ZCOR:   2.0881  1.1489  1.9915     ---
KRAW:    .0004  1.0000   .4350     ---
PKBG:     1.19   61.73   91.83     ---

So that is when we see the ~6% relative accuracy error. And here are the MACs utilized:

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Zr      la      Zr  7.7749e+02
      Zr      la      Hf  3.6888e+03
      Zr      la      Si  2.6349e+03
      Zr      la      Co  1.6648e+03
      Zr      la      O   6.6065e+02
      Hf      la      Zr  1.3762e+02
      Hf      la      Hf  1.7099e+02
      Hf      la      Si  6.3939e+01
      Hf      la      Co  3.3125e+02
      Hf      la      O   1.1692e+01
      Si      ka      Zr  1.1459e+03
      Si      ka      Hf  3.4770e+03 *
      Si      ka      Si  3.5048e+02
      Si      ka      Co  2.5192e+03
      Si      ka      O   1.0337e+03
* indicates empirical MAC

Empirical Mass Absorption Coefficients From:
C:\ProgramData\Probe Software\Probe for EPMA\EMPMAC.DAT

  Z-LINE   X-RAY Z-ABSOR     MAC
      Si      ka      Hf  3.4770e+03    Donovan (2011)

Now, the same thing but this time we use the FFAST MACs:

ELEM:       Zr      Hf      Si       O   SUM 
   101    .015  66.104  11.368  23.653 101.140
   102    .036  66.130  11.400  23.653 101.220
   103    .046  66.073  11.309  23.653 101.081

AVER:     .032  66.103  11.359  23.653 101.147
SDEV:     .016    .029    .046    .000    .069
SERR:     .009    .017    .027    .000
%RSD:    49.46     .04     .41     .00

PUBL:     n.a.  65.967  10.380  23.653 100.000
%VAR:      ---   (.21)    9.43     .00
DIFF:      ---   (.14)    .979    .000
STDS:      257      19     257     ---

STKF:    .4045   .5730   .1304     ---
STCT:   4248.7 14759.3   787.7     ---

UNKF:    .0002   .5730   .0567     ---
UNCT:      1.7 14759.3   342.6     ---
UNBG:      9.1   243.1     3.8     ---

ZCOR:   2.0107  1.1536  2.0019     ---
KRAW:    .0004  1.0000   .4350     ---
PKBG:     1.19   61.73   91.83     ---

Ok, so there's the ~9% relative error I was seeing. And here are the MACs utilized:

Current Mass Absorption Coefficients From:
FFAST    Chantler (NIST v 2.1, 2005)

  Z-LINE   X-RAY Z-ABSOR     MAC
      Zr      la      Zr  6.9520e+02
      Zr      la      Hf  3.3049e+03
      Zr      la      Si  2.6600e+03
      Zr      la      Co  1.5860e+03
      Zr      la      O   6.2295e+02
      Hf      la      Zr  1.3390e+02
      Hf      la      Hf  1.5115e+02
      Hf      la      Si  6.4790e+01
      Hf      la      Co  3.3857e+02
      Hf      la      O   1.1053e+01
      Si      ka      Zr  1.0291e+03
      Si      ka      Hf  3.4770e+03 *
      Si      ka      Si  3.2280e+02
      Si      ka      Co  2.4047e+03
      Si      ka      O   9.6997e+02
* indicates empirical MAC

Empirical Mass Absorption Coefficients From:
C:\ProgramData\Probe Software\Probe for EPMA\EMPMAC.DAT

  Z-LINE   X-RAY Z-ABSOR     MAC
      Si      ka      Hf  3.4770e+03    Donovan (2011)

Ok, so here is the question I have:  why is the concentration so much different when the only difference is the Si Ka in oxygen MAC, and even more weird, why is the Si concentration *higher* in the FFAST calculation, when the Si Ka in O FFAST MAC is *lower* than the Henke MAC value!

:o
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on November 03, 2016, 10:18:33 AM
In summary here are the results for all 10 analytical expressions using the Henke MACs (and the empirically measured MAC for Si ka in Hf):

Summary of All Calculated (averaged) Matrix Corrections:
St   19 Set   1 HfSiO4 (Hafnon)
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

Elemental Weight Percents:
ELEM:       Zr      Hf      Si       O   TOTAL
     1    .034  66.056  11.035  23.653 100.778   Armstrong/Love Scott (default)
     2    .030  65.896   9.987  23.653  99.566   Conventional Philibert/Duncumb-Reed
     3    .031  65.923  10.038  23.653  99.645   Heinrich/Duncumb-Reed
     4    .031  65.939  10.192  23.653  99.816   Love-Scott I
     5    .032  65.946  10.237  23.653  99.868   Love-Scott II
     6    .030  65.878   9.852  23.653  99.414   Packwood Phi(pz) (EPQ-91)
     7    .034  65.993  10.943  23.653 100.622   Bastin (original) Phi(pz)
     8    .033  66.008  10.640  23.653 100.334   Bastin PROZA Phi(pz) (EPQ-91)
     9    .031  65.955  10.275  23.653  99.914   Pouchou and Pichoir-Full (Original)
    10    .031  65.924  10.069  23.653  99.676   Pouchou and Pichoir-Simplified (XPP)

AVER:     .032  65.952  10.327  23.653  99.963
SDEV:     .001    .054    .408    .000    .461
SERR:     .000    .017    .129    .000

MIN:      .030  65.878   9.852  23.653  99.414
MAX:      .034  66.056  11.035  23.653 100.778

And here are the results for all 10 analytical expressions using the FFAST MACs (and the empirically measured MAC for Si ka in Hf):

Summary of All Calculated (averaged) Matrix Corrections:
St   19 Set   1 HfSiO4 (Hafnon)
FFAST    Chantler (NIST v 2.1, 2005)

Elemental Weight Percents:
ELEM:       Zr      Hf      Si       O   TOTAL
     1    .032  66.103  11.359  23.653 101.147   Armstrong/Love Scott (default)
     2    .028  65.953  10.284  23.653  99.919   Conventional Philibert/Duncumb-Reed
     3    .029  65.960  10.333  23.653  99.976   Heinrich/Duncumb-Reed
     4    .030  65.982  10.488  23.653 100.153   Love-Scott I
     5    .030  65.988  10.538  23.653 100.210   Love-Scott II
     6    .029  65.922  10.126  23.653  99.731   Packwood Phi(pz) (EPQ-91)
     7    .032  66.012  11.270  23.653 100.967   Bastin (original) Phi(pz)
     8    .031  66.059  10.968  23.653 100.711   Bastin PROZA Phi(pz) (EPQ-91)
     9    .030  66.002  10.578  23.653 100.263   Pouchou and Pichoir-Full (Original)
    10    .029  65.969  10.363  23.653 100.014   Pouchou and Pichoir-Simplified (XPP)

AVER:     .030  65.995  10.631  23.653 100.309
SDEV:     .001    .053    .424    .000    .473
SERR:     .000    .017    .134    .000

MIN:      .028  65.922  10.126  23.653  99.731
MAX:      .032  66.103  11.359  23.653 101.147

Please note that the correct value for Si in HfSiO4 should be close to 10.38 wt.%...

By the way, I did have a thought (dangerous I know), that perhaps it's the standard k-factor calculation for Si ka in the Si standard which is ZrSiO4. Note that the value for Si Ka in Zr is quite large for both, as seen here:

Henke:
Si      ka      Zr  1.1459e+03

FFAST:
Si      ka      Zr  1.0291e+03

and in fact are some 10 or 11% different.  But more interesting is that the FFAST value is lower, which in the standard, could push the calculated analysis for Si in the unknown (the HfSiO4) in the opposite direction...  so maybe that's the answer?

I've attached the MDB file below is anyone wants to play with it.  If you don't have PFE and just CalcZAF, I've also attached a CalcZAF input file...
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on January 22, 2017, 11:19:08 AM
I think I've mentioned this previously, but I thought I should point out that any data type that is displayed in the PFE Analyze! window, can also be exported directly to Excel by first opening a link to Excel using the Output | Open Link To Excel menu, then by clicking the >>Excel button in Analyze! as seen here:

(https://smf.probesoftware.com/gallery/395_22_01_17_11_16_46.png)

john
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on March 04, 2017, 10:06:26 AM
There are often several different ways to design one's analytical approach to a specific sample.  For example, trace element characterization can be approached using various methods contained in Probe for EPMA and it is up to the analyst to decide which approach they deem the best for a particular situation.

For instance, often when I want to measure trace elements in a beam sensitive glass or apatite, my students will often design a "combined condition" analytical setup where the major elements are measured at a low beam current, often using the TDI (time dependent intensity) correction, followed by the trace elements measured at a higher beam current for better sensitivity. An example of this approach is seen here:

(https://smf.probesoftware.com/gallery/395_04_03_17_9_46_29.png)

Note that both the 30 nA and the 100 nA conditions are contained in the single sample for acquisition and analysis, hence the term "combined condition" sample.  There are other approaches...

Recently a student of Paul Carpenter's wanted to measure trace elements in olivine, so Paul set them up with an analytical method using two separate analytical setups, the first for the major elements at 25 nA, and a second analytical setup at 100 nA (note that Al is acquired on two spectrometers for better sensitivity) as seen here for the 25 nA setup:

(https://smf.probesoftware.com/gallery/395_04_03_17_9_28_35.png)

and here for the 100 nA setup:

(https://smf.probesoftware.com/gallery/395_04_03_17_9_28_50.png)

Look closely and you will note that both samples have the same elements! However, the first analytical setup has all the trace elements disabled for acquisition (and quant), and the second analytical setup has all the major elements disabled for acquisition (and quant).  Please note that the disable acquisition and disable quant checkboxes are found in the Elements/Cations dialog for each element.

So, what Paul does is have the student assign *both* analytical setups to each digitized stage coordinate in the Automate! window using the Multiple Setups button. That way the program acquires each analytical setup (with the different beam currents and different elements disabled for acquisition) one after the other.  Once that is done, the user can go to the Analyze! window and combine the elements for the two setups using either of the two buttons highlighted here:

(https://smf.probesoftware.com/gallery/395_04_03_17_9_29_03.png)

The upper button doesn't permanently combine the data into a new sample, the lower button does permanently combine them. The results for the "combine selected samples" method is shown here:

(https://smf.probesoftware.com/gallery/395_04_03_17_9_29_21.png)

Finally, we can turn on the "aggregate" mode under the Analysis Options dialog and "aggregate" the two aluminum channels for better trace element sensitivity as seen here:

(https://smf.probesoftware.com/gallery/395_04_03_17_10_02_13.png)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on March 07, 2017, 05:08:43 PM
Here's something I ran across today...

I'm running some diffusion profiles in some metallurgical samples and I noticed that my totals were somewhat high around 101.5 wt.% or so.  These are PbS and PbTe samples at 15 keV, so first I checked for interferences, and they are all corrected for properly (one really needs a good Pb standard that doesn't contain S for an interference correction of S Ka on Pb Ma, so I use alamosite or PbSiO3). Then I checked the focus on the unknowns and the standards and that was good too.  No significant intensity drift either.  So why the high totals as seen here? 

(https://smf.probesoftware.com/gallery/395_07_03_17_4_03_30.png)

Then it occurred to me, the standards are carbon coated, but the unknown is not (the customer doesn't want us to carbon coat their samples, so we've been using Cu tape to ground them to the sample holder). Could that make this much of a difference for Pb Ma and Te La?

So first I went to the Calculation Options dialog in the Analyze! window and unchecked the Use Unknown Conductive Coating as seen here:

(https://smf.probesoftware.com/gallery/395_07_03_17_4_55_21.png)

Now, if you re-calculate the analysis, one gets the same results, and why is that?   It's because the coatings corrections are not actually utilized in the software unless one specifically turns them on in the Analytical | Analysis Options dialog as seen here:

(https://smf.probesoftware.com/gallery/395_07_03_17_5_06_26.png)

Now we re-calculate our results and dang if that didn't take care of the high totals:

(https://smf.probesoftware.com/gallery/395_07_03_17_5_06_40.png)
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on June 14, 2019, 09:19:05 AM
This is more of a tip than a trick, but I mention it because we recently improved the Report button output to better handle the presence of elements quantified using the EDS WDS integration feature in Probe for EPMA. The WDS and EDS integration in Probe for EPMA can utilize SDD EDS systems from Thermo (NSS and Pathfinder), Bruker (Esprit) and most recently JEOL (OEM) EDS detectors.

The Report button is located in the Analyze! window as seen here and can be applied to any unknown or standard sample in your run:

(https://smf.probesoftware.com/gallery/1_14_06_19_9_04_27.png)

This feature can be utilized to export both a text description and a tab delimited spreadsheet format of the current analytical conditions and parameters. The text output consists of (almost!) English sentences as seen here that can be edited for including in your own reports and manuscripts:

Probe for EPMA Xtreme Edition for Electron Probe Micro Analysis
Database File: C:\UserData\Eastman\06-2019\Fe, V, C, O_06-03-2019.MDB
Database File Type: PROBE
DataFile Version Number: 12.6.2
Program Version Number: 12.6.3
Database File User Name: Chris Eastman
Database File Description: C and O by WDS, V, Fe, etc. by EDS

Database Created: 6/3/2019 11:01:40 AM
Last Updated: 6/3/2019 11:01:40 AM
Last Modified: 6/13/2019 1:12:23 PM
Current Date and Time: 6/13/2019 1:13:24 PM
Nominal Beam: 54.2881 (nA)
Faraday/Absorbed Averages: 1

Correction Method and Mass Absorption Coefficient File:
ZAF or Phi-Rho-Z Calculations
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

Current ZAF or Phi-Rho-Z Selection:
Armstrong/Love Scott (default)

Correction Selections:
Phi(pz) Absorption of Armstrong/Packwood-Brown 1981 MAS
Stopping Power of Philibert and Tixier
Backscatter Coefficient of Love-Scott
Backscatter of Love-Scott
Mean Ionization of Berger-Seltzer
Phi(pz) Equation of Love-Scott
Reed/JTA w/ M-Line Correction and JTA Intensity Mod.
Fluorescence by Beta Lines NOT Included

Un    2 Fe, V, C, O trav1
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    0
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =     2245, Magnification (imaging) =   2857)
Image Shift (X,Y):                                         .00,    .00

Compositional analyses were acquired on an electron microprobe (Cameca SX100/SXFive (TCP/IP Socket)) equipped with 5 tunable wavelength dispersive spectrometers.

EDS spectra were acquired and processed using a Thermo NSS or PF EDS system.

Operating conditions were 40 degrees takeoff angle, and a beam energy of 15 keV.
The beam current was 30 nA, and the beam diameter was 0 microns.

Elements were acquired using analyzing crystals EDS for Fe ka, Nb la, V ka, PC1 for O ka, and PC2 for C ka.

The standards were Carbon (graphite) for C ka, Vanadium metal for V ka, Iron metal for Fe ka, Niobium metal for Nb la, and Al2O3 (elemental) (#13) for O ka.

Iron metal
From Johnson-Matthey, Vacuum remelted, Batch BM1664
Optical emission: Al < 1ppm, Ca < 1 ppm,
Cr 2 ppm, Co 20 ppm, Cu 3 ppm, Ni 3 ppm
Si 60 ppm, Sn 10 ppm, Ag < 1 ppm
Oxygen 310 ppm, Nitrogen 10 ppm

Vanadium metal
From Aesar, #143594, Lot #19778
99.95%, 1.0 mm wire

Carbon (graphite)
1. single crystal (synthetic) from Union Carbide
Grade 2YA, serial #8403, contains ~2.4% oxygen (from H2O?)


Al2O3 (elemental) (#13)
Specimen from Baikowski Int'l, North Carolina
'crackle' from seed crystal, 99.99%
Si ~330 PPM by EPMA (JJD), 05-30-2012

Niobium metal
Aesar, 99.99%, 0.25mm sheet
Lot #10258
Possible 0.19 wt% Ta (?)

The counting time was 30 seconds for C ka, O ka, and 45 seconds for Nb la, V ka, Fe ka.

The intensity data was corrected for Time Dependent Intensity (TDI) loss (or gain) using a self calibrated correction for C ka, O ka.

The off peak counting time was 10 seconds for C ka, O ka.

Off Peak correction method was Exponential for C ka, O ka.

Unknown and standard intensities were corrected for deadtime.

Interference corrections were applied to C for interference by Nb, and to O for interference by V, Nb,

See J.J. Donovan, D.A. Snyder and M.L. Rivers, An Improved Interference Correction for Trace Element Analysis in Microbeam Analysis, 2: 23-28, 1993

Results are the average of 10 points and detection limits ranged from .037 weight percent for C ka to .177 weight percent for O ka.

Analytical sensitivity (at the 99% confidence level) ranged from 2.222 percent relative for C ka to 10.142 percent relative for O ka.

The quantitative blank correction was utilized.
The exponential or polynomial background fit was utilized.

See John J. Donovan, Heather A. Lowers and Brian G. Rusk, Improved electron probe microanalysis of trace elements in quartz, American Mineralogist, 96, 274­282, 2011

The matrix correction method was ZAF or Phi-Rho-Z Calculations and the mass absorption coefficients dataset was LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV.

The ZAF or Phi-Rho-Z algorithm utilized was Armstrong/Love Scott (default).

Note the integration of EDS and WDS elements including the ability to apply spectral interference corrections between elements by WDS and EDS.

And here is the tab delimited report format suitable for import to Excel as seen here:

(https://smf.probesoftware.com/gallery/1_14_06_19_8_58_47.png)

Just FYI.  Available for download now.

Edit by John: In case anyone is wondering why we decided to run O and C by WDS and Fe, V and Nb by EDS, it's a long story, but basically the sample is so magnetic (and re-magnetizes in the instrument), that the Bragg defocus between the standards and unknowns was killing us. So we ran Fe, V and Nb by EDS to avoid the Bragg defocus issue, and ran O and C by WDS because the EDS just can't handle these elements at trace levels. Also because the WDS peaks for O and C are so broad that the Bragg defocus is much less of an issue. The remaining problem now is trying to figure out where the darn beam is/was. Tough problem.
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on December 06, 2019, 10:00:01 AM
Here's another tip for those working with unusual compositions and wanting to classify those compositions and their modal abundances.

Normally for modal calculations of common silicates and oxides one can utilize the DHZ.MDB standard composition database because it contains most common rock forming minerals. But when working with unusual compositions, one should consider creating their own "custom" standard database (custom.mdb) for modal calculations.

One way to do this (other than simply entering the compositions by hand into the custom.mdb file), is when you are in the Analyze! window and have an analysis displayed, to simply right click the analyzed sample and click the Export Selected Samples To Custom.MDB menu.

(https://smf.probesoftware.com/gallery/1_06_12_19_9_53_22.png)

The Probe for EPMA software will then export the average composition of each sample to the custom.mdb standard database, which can then be used on your quantitative WDS maps for modal identification in the CalcImage software as described here:

https://smf.probesoftware.com/index.php?topic=1071.msg7095#msg7095
Title: Re: Tips and Tricks for PFE quant
Post by: alerner on February 05, 2020, 04:57:52 PM
Hi all,

A useful approach that I've been using to assess the quality of standard analyses (unknowns too) within the Analyze! window is to use the String Selection field to search for and highlight all instances of a particular standard across multiple standard sets (where * can be used as a wildcard), and then output all these analyses with "Combine Data Lines from Selected Samples". This results in a easy to view output of all standards run for that entire session, so that the intensity reproducibility and/or drift with time can be seen. It is then easy to Disable anomalous measurements from within the data display.

I follow suite with particular sets of unknowns of interest, and "Combine Analysis Lines from Selected Samples" to easily view the output data + assess totals.

(https://smf.probesoftware.com/gallery/1344_05_02_20_4_20_35.png)

Best,
Allan Lerner
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on November 10, 2021, 08:47:27 AM
Just to add to Alan's point above, the latest version of Probe for EPMA now allows one to combine data lines from 2 or more samples (up to 500 lines total) now including the EDS spectra elements as well:

(https://smf.probesoftware.com/gallery/1_10_11_21_8_36_47.png)

In the above example, the elements Mg, K and Fe were acquired by EDS for quantification. This is seen in the following screenshot with the same samples combined and just displaying the intensities:

(https://smf.probesoftware.com/gallery/1_10_11_21_8_37_06.png)

Thanks to Scott Boroughs for calling attention to a bug when including the quant EDS elements that is now fixed.
Title: Re: Tips and Tricks for PFE quant
Post by: Rom on January 27, 2022, 04:08:43 AM
Hi everyone,
could you explain how I can use options "standard X increment, ..." only for some standards of my "Run", not for all standards which will measure.
Thank you.
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on January 27, 2022, 08:28:43 AM
Digitize the standard positions exactly as you want them in the Automate! window, then in Acquisition Options check the checkbox "Use Only Digitized Standard Positions".

See also:

https://smf.probesoftware.com/index.php?topic=8.msg4011#msg4011
Title: Re: Tips and Tricks for PFE quant
Post by: Rom on January 27, 2022, 03:43:55 PM
The option "acquire standard samples (again)" work at this way, but the points positions on the second, third, ... run will be the same - am I right?
Or checkbox "re-standard Y increment" will work?
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on January 27, 2022, 03:57:36 PM
Easy enough to test it, but yes, re-standard increment in Y still applies for standards.
Title: Re: Tips and Tricks for PFE quant
Post by: Rom on January 27, 2022, 04:06:46 PM
Thank you!
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on February 09, 2022, 09:01:06 AM
Here's an interesting "trick".

Some of you may already utilize the Load Image button from the Imaging button (Acquire!) or the Digitize Image button (Digitize!) windows to load an image acquired using another software (e.g., JEOL, Cameca, Thermo, Bruker, etc. applications) into Probe for EPMA, for documentation or digitizing stage positions as described here:

https://smf.probesoftware.com/index.php?topic=42.msg9193#msg9193

The idea being that if the instrument is still at the same stage position and the same magnification (FOV) as when the loaded image was acquired, then the loaded image will be properly calibrated for the stage coordinates.

But it should be noted that one can load even images not acquired using a scanned beam, for example, an optical image from the light optics camera as seen here:

(https://smf.probesoftware.com/gallery/1_09_02_22_8_48_58.png)

The only important thing to remember is to utilize the stage position from when the optical image was captured in the PeakSight software, and especially to set the electron optics FOV to a value that corresponds to the optical FOV.

On SX100/SXFive Cameca instruments the light optics FOV is variable, but since we use the 500 um FOV as the default optical zoom, that corresponds to about 800x magnification for the electron optics. Other optical FOVs can also be used to capture and load light optics images, just be sure to set the magnification of the instrument to the light optics FOV for proper stage calibration of the loaded images.
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on April 12, 2022, 12:56:55 PM
Here's a few tips for utilizing previously acquired standard intensities from other runs.

So normally we would create a new run, then maybe load the sample setup from a previous run that had similar elements/conditions using the Acquire! window New Sample/Setup button as seen here:

(https://smf.probesoftware.com/gallery/395_12_04_22_11_50_35.png)

This will load not only the selected sample setup, but also all run (globals) specified in that run, and optionally all the standard intensities required for that specified sample setup.

This is a great way to get going quickly with a new run and of course the imported sample setup can be further modified and/or re-standardiazed.

The other more manual method to load standard intensities requires some preparation.  Some of you may already utilize the Save Element Setup feature in Probe for EPMA to save specific element setups to the public SETUP.MDB file, so that these element setups can be recalled later by any user.

What you may not have noticed is that if the sample is a standard it will also save the standard intensity for that element. But to streamline this method, one can simply utilize the Save Setups as seen here from the Analyze! window:

(https://smf.probesoftware.com/gallery/1_20_08_25_7_56_17.png)

This button will automatically search the sample and automatically output all element setups associated with that sample including the standard (and interference and MAN) standard intensities to the (several) element setup databases.  One click is all it takes!    8)

Once you have saved a number of element setups, you can import them into new runs using the button shown below. Personally when using this Load Element Setup dialog, I usually just load the element setups (without the standard intensities) and then re-acquire the standards, just to be sure to get up to date standard intensities.

But if desired, one can also load individual standard intensities using the button shown below.

(https://smf.probesoftware.com/gallery/395_12_04_22_11_44_12.png)
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on June 07, 2022, 08:44:00 AM
For this "tips and tricks" feature you will need the latest version of Probe for EPMA (as usual update from the Help | Update Probe for EPMA menu).

Sometimes a user will analyze for oxygen, but then later on would like to try simply calculating oxygen by stoichiometry.

However, if one goes into the Calculation Options dialog and clicks on the Calculate With Stoichiometric Oxygen option, they will get this warning:

(https://smf.probesoftware.com/gallery/1_07_06_22_8_32_05.png)

To remedy this, just go to the Elements Cations dialog and first, disable the analyzed oxygen for quantification by clicking on the analyzed oxygen row, then checking the Disable Quant checkbox.

Next click on on an empty row in the Elements/Cations dialog and enter oxygen with no x-ray line (no x-ray line indicates an unanalyzed element).

Now, go back to the Calculations Options dialog and now you will be able to click the Calculate With Stoichiometric Oxygen option. After clicking the Analyze button you will now see output similar to this:

(https://smf.probesoftware.com/gallery/1_07_06_22_8_32_30.png)
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on January 18, 2023, 09:21:54 AM
This is very much a beginner question, but I think it might help those who are just starting to use the Probe for EPMA software, because Probe for EPMA is designed completely differently than the JEOL and Cameca EPMA software.

The main point is that Probe for EPMA is intentionally designed from a "sample centric" perspective, while other EPMA software seems to be more designed from an "instrument centric" perspective. Basically when one looks at the Probe for EPMA software it appears to show a sample or samples. A sample being a collection of intensity or position data. The JEOL or Cameca software, on the other hand, appears (to me at least) to show the instrument more. Which makes sense to me because the JEOL and Cameca softwares were designed by instrument engineers, while Probe for EPMA was designed by scientists.

Basically, Probe for EPMA has two primary types of samples, each of which can contain zero to N data points. First, intensity samples (standards, unknowns and wavescans visible from the Acquire! and Analyze! windows), and second, position samples (standards, unknowns and wavescans visible from the Automate!, Digitize and Positions windows) that contain stage positions (and optionally sample conditions, setups, etc).  Here is a more detailed description:

The samples in Acquire! and Analyze! windows are intensity samples (with or without intensity data). The samples in the Automate! window are position samples (with or without position data). Once intensity samples have been created and intensity data acquired (in Acquire! manually or in Automate! automatically), these intensity samples can be viewed in the Analyze! window.

You can add position data for automated acquisition from the Automate! window using the Digitize button. When you add (stage) position data to samples in the Automate! they can then be automated and then the intensity data samples will appear in the Analyze! window for quantification.

The Acquire! window only works with the "current" or last intensity sample created (usually an unknown sample).  And the "current" sample can only be modified if it contains no intensity data (except changes for some background models, matrix corrections, software dead time, etc., etc.). So just create a new "current" sample if you want to change any acquisition conditions.

Remember, you cannot change sample conditions if the sample already contains intensity data (that would be unscientific!), but you can view the sample conditions from the Analyze! window using the Data, Elements/Cations and Conditions buttons.
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on January 18, 2023, 05:28:35 PM
Quote from: John Donovan on January 18, 2023, 09:21:54 AM
Basically, Probe for EPMA has two primary types of samples, each of which can contain zero to N data points. First, intensity samples (standards, unknowns and wavescans visible from the Acquire! and Analyze! windows), and second, position samples (standards, unknowns and wavescans visible from the Automate!, Digitize and Positions windows) that contain stage positions (and optionally sample conditions, setups, etc). 

Sometimes the shortest explanation is the best explanation!

This is what one of our installers wrote to me on how they explain it:

- Acquire is where you tell it what to do.
- Automate is where you tell it where to do it.
- Analyze is where you look at what it did.

8)
Title: Re: Tips and Tricks for PFE quant
Post by: Ben Buse on January 24, 2023, 03:14:07 AM
My version on Owen,

-Acquire is where you create setup (with option of insitu acquistion, and record of all positions)
-Automate is where you automate
-Analyze is where you review standards and unknown results
Title: Re: Tips and Tricks for PFE quant
Post by: Anette von der Handt on June 09, 2023, 06:02:19 PM
How to quickly add a custom list of standards to a run

If you have a longer and disjointed list of standards that need to be frequently added to a run, here is a good trick.


1. In the Automate! window, first select all the standards that need to be added. Then, export this selection to a position list.
(https://smf.probesoftware.com/gallery/17_09_06_23_5_20_06.png)



2. Go to your "Standard Assignments" and "Add/Remove" standards and load in this .pos file.
(https://smf.probesoftware.com/gallery/17_09_06_23_5_20_27.png)



3. Admire that it only took you two mouse clicks to get all your standards into your run. This can be very useful for situations where a file setup load is not desired but I want users (or myself) give easy access to a curated list of standards.
(https://smf.probesoftware.com/gallery/17_09_06_23_5_54_26.png)
Title: Re: Tips and Tricks for PFE quant
Post by: Anette von der Handt on June 14, 2023, 05:41:37 PM
Duplicate positions as unknowns or wavescans

Maybe not so much a trick, just a well hidden function. PFE distinguishes three different position "types": standard, unknown and wavescans. Did you know that you can use one set of positions (like standards) to a create a different type (like wavescans). It not only copies over the X,Y,Z positions but also the comment name.

For this you need to get to the Positions window, which is accessible either through the "Digitize positions" dialog (in Automate!)
(https://smf.probesoftware.com/gallery/17_14_06_23_5_27_39.png)


or through the Move window (in Acquire!). You can find the Move window in Acquire!
(https://smf.probesoftware.com/gallery/17_09_06_23_5_20_57.png)


In the positions dialog, you can duplicate any position as either "unknown" or "wavescan" position.
(https://smf.probesoftware.com/gallery/17_09_06_23_5_21_24.png)


How do I use/abuse this function?
1) Standard evaluation: When I have a new standard block, I can easily set up wavescans for all standards after recording the standard locations. And they all have the proper comment name.

2) Changing the order of blocks of unknown positions. For example, I decide I want to run all positions in sample three first and not last, I just duplicate the positions in the order I would like to run them and delete the old one (or just not select them)

3) Create perfectly parallel traverses by setting up the first traverse, duplicate it as many times as needed and then use the update function in Acquire! to shift them around.

I am sure there are many other. By the way, this dialog is also where you can also shift positions by an increment.
Title: Re: Tips and Tricks for PFE quant
Post by: Anette von der Handt on June 15, 2023, 04:06:34 PM
Shift positions with Update

In case not everyone is aware of this trick (and it plays well with the Duplicate tip from my last post): The Update function in the Acquire window shifts all positions in same unknown based on the current stage position. So, usually the first position gets updated with the current stage position and all following positions get shifted by the same relative shift in X/Y/Z. This is great to update standard positions for example.

Not everyone may know that this can be applied to any position in your unknown.


(https://smf.probesoftware.com/gallery/17_15_06_23_3_47_34.png)

If I have a traverse going across a large grain and I want to make sure that I hit the core of the grain exactly, I will select the halfway position in my traverse, go to my desired location at the grain center and hit update. So, you can really select any point as the reference for your "Update" and the possibilities are endless if you want to quickly shift sets of positions (traverses, grids) around.
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on June 15, 2023, 09:49:39 PM
And to add further to Anette's post above, if you want to only update a single position, simply select the position and use the mouse right click to select the update single position menu as shown here:

(https://smf.probesoftware.com/gallery/1_15_06_23_9_46_59.png)
Title: Re: Tips and Tricks for PFE quant
Post by: Anette von der Handt on June 21, 2023, 11:19:16 AM
And another addendum, regarding the order of unknown or wavescan positions in the position list: You can reorder them using the little arrows although only one by one. For larger batches, I use the duplicate function as described in my earlier post.

(https://smf.probesoftware.com/gallery/17_21_06_23_11_16_49.png)
Title: Re: Tips and Tricks for PFE quant
Post by: Anette von der Handt on June 21, 2023, 12:34:12 PM
Using varying numbers of standard positions during an automated standard acquisition run

PFE allows to easily change the absolute number of standard positions run during a standard intensity acquisition through the "Standard Points to Acquire" field in Automate!. But what if I want to vary them  within my standard run?

A trick is to set the checkmark for "Use Only Digitized Standard Positions" in the Acquisition Options dialog. Then add/delete positions for each standard to match what your desired positions count is and set the value for "Standard Points to Acquire" to the highest value. So if you set that value to 15 and one standard has 15 positions but all the other ones have 7, then this is exactly what will run.

(https://smf.probesoftware.com/gallery/17_14_06_23_3_10_16.png)
Title: Re: Tips and Tricks for PFE quant
Post by: Probeman on November 30, 2023, 08:31:59 AM
Quote from: Probeman on April 12, 2022, 12:56:55 PM...The other more manual method to load standard intensities requires some preparation.  Some of you may already utilize the Save Element Setup feature in Probe for EPMA to save specific element setups to the public SETUP.MDB file, so that these element setups can be recalled later by any user.

What you may not have noticed is that if the sample is a standard it will also save the standard intensity for that element. But to streamline this method, one can simply utilize the Save Setups as seen here from the Analyze! window:

(https://smf.probesoftware.com/gallery/1_20_08_25_7_56_17.png)

This button will automatically search the sample and automatically output all element setups associated with that sample including the standard (and interference and MAN) standard intensities to the (several) element setup databases.  One click is all it takes!    8)

Once you have saved a number of element setups, you can import them into new runs using the button shown below. Personally when using this Load Element Setup dialog, I usually just load the element setups (without the standard intensities) and then re-acquire the standards, just to be sure to get up to date standard intensities.

But if desired, one can also load individual standard intensities using the button shown below.

(https://smf.probesoftware.com/gallery/395_12_04_22_11_44_12.png)

I should add that this button is only available from the Elements/Cations dialog from the Analyze! window as shown here:

(https://smf.probesoftware.com/gallery/395_30_11_23_8_25_07.png)

Now normally I just use the Load File Setup button to load a sample setup from an old run (usually without the standard intensities and then re-run the standards to get appropriate intensities), but once in a great while, I'll want to try a specific standard intensity from an old run (that was saved to the element setup database) and then this feature can be useful. 

For example, maybe the filament died and I just needed to quickly acquire another standard or two for some trace elements:

https://smf.probesoftware.com/index.php?topic=610.msg11752#msg11752

Remember, for trace elements, the primary standard intensity is the *least* important parameter!
Title: Re: Tips and Tricks for PFE quant
Post by: JonF on March 14, 2024, 04:04:22 AM
I was collecting some data last weekend on our JEOL 8530F simultaneously using WDS and our JEOL EDS in PfE. I wasn't really using the EDS, but I always collect the data just in case I might need it later on.

On reviewing the weekend run, I noticed that one of the WD spectrometers decided to start misbehaving part way through the analysis. Unfortunately, this was a major element and was consequently throwing the totals all over the place.

"No problem" thought I, "I'll just switch to using the EDS instead". Unfortunately, that particular element had a horrendous interference from another major element and whilst I could use the EDS data, I'd rather just do that particular element by difference.

I duly disabled the problematic element in the Elements/Cations option in the Analyze! window, and went to add this element back in (so that I could specify the element by difference). When the Element/Cation Properties window first loaded, the radio buttons for Analyzed vs Specified were greyed out (i.e. unselectable), with Specified selected by default. The WDS option was also selected but greyed out, with EDS selectable but unselected:

(https://smf.probesoftware.com/gallery/796_18_03_24_8_52_50.jpeg)

As soon as I either typed an element in to the Element box, or selected an element from the drop down, the radio buttons jumped from Specified to Analyzed and from WDS to EDS, and I couldn't revert back as all the options were unselectable!:

(https://smf.probesoftware.com/gallery/796_18_03_24_8_53_24.jpeg)

As I didn't want to analyze this element by EDS (or WDS), but I wanted to specify this element by difference, what I had to do was scroll down to the bottom of the X-Ray Line list and select the blank space:

(https://smf.probesoftware.com/gallery/796_14_03_24_3_58_49.png)

This then jumped the radio button selection back to Specified and allowed me to select this element from the Element By Difference (as elemental) drop down menu in the Calculation Options window from the Analyze! window. Hurrah!

It also turns out there's an even easier way to do this! Instead of going through the rigmarole of adding the element to the list of elements in the Element/Cations window, I could simply have disabled the troublesome element and added it back in via the Formula By Difference (e.g. Li2B4O7) text entry box in the Calculation Options window in Analyze!:

(https://smf.probesoftware.com/gallery/796_18_03_24_8_53_56.jpeg)
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on May 24, 2024, 08:02:41 PM
We recently had a customer report that they were getting an error in the matrix correction, specifically in the fluorescence correction: ZAFFlu2 - Overflow.  But when they sent us the PFE MDB file, we could not reproduce the error.

We then wondered if they might have inadvertently somehow corrupted the default x-ray line data files used in the matrix corrections. These are the XLINE.DAT, XLINE2.DAT, XEDGE.DAT and XFLUOR.DAT and XFLUOR2.DAT data files.  We do not overwrite  these file normally when the software is updated because we do allow these files to be edited by the user (power users?), so we suggested that they try copying these original files (attached below) over their current files.

That seems to have fixed the issue.  None of us have any idea how these x-ray emission files could have become corrupted.  But they are attached below in case anyone runs into a similar issue and wants to update their default emission files.
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on February 22, 2025, 02:20:51 PM
Sometimes we get requests for features that are already implemented, but "undiscovered"!

Someone recently asked "Is there a way to have the analysis output automatically after an acquisition?" and the answer is "yes", and here is where to find it:

(https://smf.probesoftware.com/gallery/1_22_02_25_2_10_04.png)

Note the the software will ask you the first time:

(https://smf.probesoftware.com/gallery/1_22_02_25_2_10_35.png)

so you'll want to make sure that your primary standards (and MAN/interference stds, etc.) are already acquired and assigned(!) before you activate this feature. Otherwise you'll get this error:

(https://smf.probesoftware.com/gallery/1_22_02_25_2_10_49.png)

and your automation will halt.

Note also that this feature works for manual single point acquisitions from the Acquire! window and automated acquisitions from the Automate! window. Also note that if you have a link to an Excel spreadsheet opened, by using the this menu:

(https://smf.probesoftware.com/gallery/1_22_02_25_2_10_19.png)

your results will also be sent to Excel after each analysis. See the other automatic output options in the Acquisition Options dialog from the Acquire! window.

Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on August 21, 2025, 05:03:58 PM
A colleague asked how to change the standard assignments from the Analyze! window for multiple samples...

Start by selecting the samples that you want to change the standard assignments for:

(https://smf.probesoftware.com/gallery/1_21_08_25_4_58_30.png)

Then click the Standard Assignments button and confirm the samples that you want to edit.  The selected sample indicates the basis for the elements to modify (in case different samples have different elements):

(https://smf.probesoftware.com/gallery/1_21_08_25_4_58_48.png)

Then click the element you want to modify the standard assignments for.

Note that you can also utilize the text selection control to quickly select all samples, for example that contain the string "garnet", etc.:

https://smf.probesoftware.com/index.php?topic=42.msg8602#msg8602
Title: Re: Tips and Tricks for PFE quant
Post by: John Donovan on September 17, 2025, 10:05:36 AM
This is a small thing but sometimes we need to add unanalyzed elements to our samples in order to calculate the complete matrix effects accurately:

https://smf.probesoftware.com/index.php?topic=92.0

For example, adding ZrSiO4 by difference when analyzing only traces in zircons, or carbon by stoichiometry when analyzing Ca, Mg, etc in carbonates.

Usually we can quickly change or add an element as an unanalyzed element by clicking the "Specified" option in the Elements/Cations dialog. But depending on whether the sample already contains data (you must make a new sample to add an analyzed (WDS) element), or you also have elements by EDS (where you can add an analyzed element even when the sample already contains data), these controls may or may not be enabled.

This is indicated by the tool tip help as seen here:

(https://smf.probesoftware.com/gallery/1_17_09_25_9_53_31.png)

To add an unanalyzed element when EDS data is present (and these controls are disabled), you simply need to select the last x-ray selection, which is a blank as seen here:

(https://smf.probesoftware.com/gallery/1_17_09_25_9_53_48.png)

Alternatively, one can also simply delete the x-ray line leaving it blank. That action tells the software that the element is not by EDS (or WDS), but is instead unanalyzed (or specified).